Department of Orthopaedic Surgery, Shenzhen People's Hospital, (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen, PR China.
Division of Adult Joint Reconstruction and Sports Medicine, Department of Orthopedic, the First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen, PR China.
Clin Orthop Relat Res. 2024 Jul 1;482(7):1246-1262. doi: 10.1097/CORR.0000000000003067. Epub 2024 Apr 19.
Extracellular vesicles derived from mesenchymal stem cells (MSCs) show great promise in treating osteoarthritis (OA). However, studies from the perspective of clinical feasibility that consider an accessible cell source and a scalable preparation method for MSC-extracellular vesicles are lacking.
QUESTIONS/PURPOSES: (1) Does an infrapatellar fat pad obtained from patients undergoing TKA provide a suitable source to provide MSC-extracellular vesicles purified by anion exchange chromatography? Using an in vivo mouse model for OA in the knee, (2) how does injection of the infrapatellar fat pad-derived MSC-extracellular vesicles alter gait, cartilage structure and composition, protein expression (Type II collagen, MMP13, and ADAMTS5), subchondral bone remodeling and osteophytes, and synovial inflammation?
The infrapatellar fat pad was collected from three patients (all female; 62, 74, 77 years) during TKA for infrapatellar fat pad-derived MSC culturing. Patients with infection, rheumatic arthritis, and age > 80 years were excluded. MSC-extracellular vesicles were purified by anion exchange chromatography. For the animal study, we used 30 male C57BL/6 mice aged 10 weeks, divided into six groups. MSC-extracellular vesicles were injected weekly into the joint of an OA mouse model during ACL transection (ACLT). To answer our first research question, we characterized MSCs based on their proliferative potential, differentiation capacity, and surface antigen expression, and we characterized MSC-extracellular vesicles by size, morphology, protein marker expression, and miRNA profile. To answer our second research question, we evaluated the effects of MSC-extracellular vesicles in the OA mouse model with quantitative gait analysis (mean pressure, footprint area, stride length, and propulsion time), histology (Osteoarthritis Research Society International Score based on histologic analysis [0 = normal to 24 = very severe degeneration]), immunohistochemistry staining of joint sections (protein expression of Type II collagen, MMP13, and ADAMTS5), and micro-CT of subchondral bone (BV/TV and Tb.Pf) and osteophyte formation. We also examined the mechanism of action of MSC-extracellular vesicles by immunofluorescent staining of the synovium membrane (number of M1 and M2 macrophage cells) and by analyzing their influence on the expression of inflammatory factors (relative mRNA level and protein expression of IL-1β, IL-6, and TNF-α) in lipopolysaccharide-induced macrophages.
Infrapatellar fat pads obtained from patients undergoing TKA provide a suitable cell source for producing MSC-extracellular vesicles, and anion exchange chromatography is applicable for isolating MSC-extracellular vesicles. Cultured MSCs were spindle-shaped, proliferative at Passage 4 (doubling time of 42.75 ± 1.35 hours), had trilineage differentiation capacity, positively expressed stem cell surface markers (CD44, CD73, CD90, and CD105), and negatively expressed hematopoietic markers (CD34 and CD45). MSC-extracellular vesicles purified by anion exchange chromatography had diameters between 30 and 200 nm and a typical cup shape, positively expressed exosomal marker proteins (CD63, CD81, CD9, Alix, and TSG101), and carried plentiful miRNA. Compared with the ACLT group, the ACLT + extracellular vesicle group showed alleviation of pain 8 weeks after the injection, indicated by increased area (0.67 ± 0.15 cm 2 versus 0.20 ± 0.03 cm 2 , -0.05 [95% confidence interval -0.09 to -0.01]; p = 0.01) and stride length (5.08 ± 0.53 cm versus 6.20 ± 0.33 cm, -1.12 [95% CI -1.86 to -0.37]; p = 0.005) and decreased propulsion time (0.22 ± 0.06 s versus 0.11 ± 0.04 s, 0.11 [95% CI 0.03 to 0.19]; p = 0.007) in the affected hindlimb. Compared with the ACLT group, the ACLT + extracellular vesicles group had lower Osteoarthritis Research Society International scores after 4 weeks (8.80 ± 2.28 versus 4.80 ± 2.28, 4.00 [95% CI 0.68 to 7.32]; p = 0.02) and 8 weeks (16.00 ± 3.16 versus 9.60 ± 2.51, 6.40 [95% CI 2.14 to 10.66]; p = 0.005). In the ACLT + extracellular vesicles group, there was more-severe OA at 8 weeks than at 4 weeks (9.60 ± 2.51 versus 4.80 ± 2.28, 4.80 [95% CI 0.82 to 8.78]; p = 0.02), indicating MSC-extracellular vesicles could only delay but not fully suppress OA progression. Compared with the ACLT group, the injection of MSC-extracellular vesicles increased Type II collagen expression, decreased MMP13 expression, and decreased ADAMTS5 expression at 4 and 8 weeks. Compared with the ACLT group, MSC-extracellular vesicle injection alleviated osteophyte formation at 8 weeks and inhibited bone loss at 4 weeks. MSC-extracellular vesicle injection suppressed inflammation; the ACLT + extracellular vesicles group had fewer M1 type macrophages than the ACLT group. Compared with lipopolysaccharide-treated cells, MSC-extracellular vesicles reduced mRNA expression and inhibited IL-1β, IL-6, and TNF-α in cells.
Using an OA mouse model, we found that infrapatellar fat pad-derived MSC-extracellular vesicles could delay OA progression via alleviating pain and suppressing cartilage degeneration, osteophyte formation, and synovial inflammation. The autologous origin of extracellular vesicles and scalable purification method make our strategy potentially viable for clinical translation.
Infrapatellar fat pad-derived MSC-extracellular vesicles isolated by anion exchange chromatography can suppress OA progression in a mouse model. Further studies with large-animal models, larger animal groups, and subsequent clinical trials are necessary to confirm the feasibility of this technique for clinical OA treatment.
间充质干细胞(MSCs)衍生的细胞外囊泡在治疗骨关节炎(OA)方面显示出巨大的潜力。然而,从临床可行性的角度考虑,考虑到可获得的细胞来源和可扩展的 MSC-细胞外囊泡制备方法的研究还很缺乏。
问题/目的:(1)来自接受 TKA 的患者的髌下脂肪垫是否为通过阴离子交换层析纯化的 MSC-细胞外囊泡提供了合适的来源? 使用 OA 模型的体内小鼠膝关节模型,(2)髌下脂肪垫衍生的 MSC-细胞外囊泡如何改变步态、软骨结构和组成、蛋白表达(II 型胶原、MMP13 和 ADAMTS5)、软骨下骨重塑和骨赘形成以及滑膜炎症?
从三名(均为女性;62、74、77 岁)接受 TKA 的患者中采集髌下脂肪垫用于培养 MSC。排除感染、风湿性关节炎和年龄 > 80 岁的患者。通过阴离子交换层析从患者中分离出 MSC-细胞外囊泡。对于动物研究,我们使用了 30 只 10 周龄的雄性 C57BL/6 小鼠,分为六组。每周将 MSC-细胞外囊泡注射到 ACLT 期间的 OA 小鼠模型的关节中。为了回答我们的第一个研究问题,我们根据其增殖潜力、分化能力和表面抗原表达来表征 MSC,并通过大小、形态、蛋白标志物表达和 miRNA 谱来表征 MSC-细胞外囊泡。为了回答我们的第二个研究问题,我们通过定量步态分析(平均压力、足迹面积、步长和推进时间)、组织学(基于组织学分析的骨关节炎研究协会国际评分[0 = 正常至 24 = 非常严重退变])、关节切片的免疫组织化学染色(II 型胶原、MMP13 和 ADAMTS5 的蛋白表达)和软骨下骨的 micro-CT(BV/TV 和 Tb.Pf)和骨赘形成来评估 MSC-细胞外囊泡在 OA 小鼠模型中的作用。我们还通过滑膜膜的免疫荧光染色(M1 和 M2 巨噬细胞的数量)和分析它们对脂多糖诱导的巨噬细胞中炎症因子(相对 mRNA 水平和 IL-1β、IL-6 和 TNF-α 的蛋白表达)的影响来研究 MSC-细胞外囊泡的作用机制。
来自接受 TKA 的患者的髌下脂肪垫为产生 MSC-细胞外囊泡提供了合适的细胞来源,阴离子交换层析可用于分离 MSC-细胞外囊泡。培养的 MSC 呈梭形,在传代 4 时呈增殖状态(倍增时间为 42.75±1.35 小时),具有三系分化能力,阳性表达干细胞表面标志物(CD44、CD73、CD90 和 CD105),并呈阴性表达造血标志物(CD34 和 CD45)。通过阴离子交换层析纯化的 MSC-细胞外囊泡直径在 30 至 200nm 之间,具有典型的杯形,阳性表达外泌体标志物蛋白(CD63、CD81、CD9、Alix 和 TSG101),并携带大量 miRNA。与 ACLT 组相比,注射后 8 周,ACLT+细胞外囊泡组疼痛减轻,表现为面积增加(0.67±0.15cm2 对 0.20±0.03cm2,-0.05[95%置信区间-0.09 至-0.01];p=0.01)和步长增加(5.08±0.53cm 对 6.20±0.33cm,-1.12[95%置信区间-1.86 至-0.37];p=0.005)以及推进时间缩短(0.22±0.06s 对 0.11±0.04s,0.11[95%置信区间 0.03 至 0.19];p=0.007)在受影响的后肢。与 ACLT 组相比,ACLT+细胞外囊泡组在第 4 周(8.80±2.28 对 4.80±2.28,4.00[95%置信区间 0.68 至 7.32];p=0.02)和第 8 周(16.00±3.16 对 9.60±2.51,6.40[95%置信区间 2.14 至 10.66];p=0.005)的骨关节炎研究协会国际评分较低。与第 4 周相比,ACLT+细胞外囊泡组在第 8 周时 OA 更严重(9.60±2.51 对 4.80±2.28,4.80[95%置信区间 0.82 至 8.78];p=0.02),表明 MSC-细胞外囊泡只能延迟但不能完全抑制 OA 进展。与 ACLT 组相比,MSC-细胞外囊泡注射增加了 II 型胶原表达,降低了 MMP13 表达,并降低了第 4 和 8 周的 ADAMTS5 表达。与 ACLT 组相比,MSC-细胞外囊泡注射在第 8 周减轻了骨赘形成,并在第 4 周抑制了骨丢失。MSC-细胞外囊泡注射抑制炎症;ACLT+细胞外囊泡组的 M1 型巨噬细胞少于 ACLT 组。与脂多糖处理的细胞相比,MSC-细胞外囊泡降低了细胞中的 mRNA 表达并抑制了 IL-1β、IL-6 和 TNF-α。
使用 OA 小鼠模型,我们发现髌下脂肪垫衍生的 MSC-细胞外囊泡可通过减轻疼痛和抑制软骨退变、骨赘形成和滑膜炎症来延迟 OA 进展。细胞外囊泡的自体来源和可扩展的纯化方法使我们的策略在临床转化方面具有潜在的可行性。
来自髌下脂肪垫的经阴离子交换层析分离的 MSC-细胞外囊泡可抑制 OA 模型中的进展。需要更大的动物模型、更大的动物组和随后的临床试验来证实该技术治疗临床 OA 的可行性。