Suppr超能文献

用于探索土壤类型演变的机器学习集成技术

Machine learning ensemble technique for exploring soil type evolution.

作者信息

Wu Xiangyuan, Wu Kening, Hao Shiheng, Yu Er, Zhao Jinghui, Li Yan

机构信息

School of Public Affairs, Institute of Land Science and Property, Zhejiang University, Hangzhou, 310058, China.

School of Land Science and Technology, China University of Geosciences, Beijing, 100083, China.

出版信息

Sci Rep. 2025 Jul 7;15(1):24332. doi: 10.1038/s41598-025-10608-8.

Abstract

Machine learning has shown great potential in predicting soil properties, but individual models are often prone to overfitting, limiting their generalization. Ensemble models address this challenge by combining the strengths of multiple algorithms. This study applies a voting-based ensemble model (VEM), integrating Random Forest (RF), Support Vector Machine (SVM), and XGBoost (XGB), to gain a deeper understanding of soil type evolution, which is crucial for land management and soil conservation. The research, conducted in the Tongzhou District of Beijing, uses 5,000 sampling points selected via genetic algorithms for model training, 237 surface samples for consistency testing, and 97 profiles for field validation. The VEM demonstrates high accuracy and robustness, producing a detailed soil type map and identifying key trends in soil type evolution. This study highlights the effectiveness of ensemble models in understanding soil evolution and offers valuable insights into soil system dynamics.

摘要

机器学习在预测土壤性质方面已显示出巨大潜力,但单个模型往往容易过度拟合,限制了它们的泛化能力。集成模型通过结合多种算法的优势来应对这一挑战。本研究应用基于投票的集成模型(VEM),整合随机森林(RF)、支持向量机(SVM)和极端梯度提升(XGB),以更深入地了解土壤类型演变,这对土地管理和土壤保护至关重要。该研究在北京通州区进行,使用通过遗传算法选择的5000个采样点进行模型训练,237个表层样本进行一致性测试,97个剖面进行实地验证。VEM显示出高准确性和稳健性,生成了详细的土壤类型图,并识别出土壤类型演变的关键趋势。本研究突出了集成模型在理解土壤演变方面的有效性,并为土壤系统动态提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f23/12234959/82b8fa1e6bca/41598_2025_10608_Fig1_HTML.jpg

相似文献

1
Machine learning ensemble technique for exploring soil type evolution.
Sci Rep. 2025 Jul 7;15(1):24332. doi: 10.1038/s41598-025-10608-8.
2
Stabilizing machine learning for reproducible and explainable results: A novel validation approach to subject-specific insights.
Comput Methods Programs Biomed. 2025 Jun 21;269:108899. doi: 10.1016/j.cmpb.2025.108899.
5
Estimation of soil free Iron content using spectral reflectance and machine learning algorithms.
Sci Rep. 2025 Jul 4;15(1):23928. doi: 10.1038/s41598-025-09301-7.
7
Two-stage ensemble learning framework for automated classification of keratoconus severity.
Comput Biol Med. 2025 Sep;195:110568. doi: 10.1016/j.compbiomed.2025.110568. Epub 2025 Jun 25.
9
Optimized prediction of diabetes complications using ensemble learning with Bayesian optimization: a cost-efficient laboratory-based approach.
Front Endocrinol (Lausanne). 2025 Jun 20;16:1593068. doi: 10.3389/fendo.2025.1593068. eCollection 2025.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验