Suppr超能文献

基于滤波型神经网络的搏动性体外膜肺氧合中的反搏控制:提高心跳-脉搏辨别及同步精度

Filter-type neural network-based counter-pulsation control in pulsatile ECMO: improving heartbeat-pulse discrimination and synchronization accuracy.

作者信息

Jang Hyun-Woo, Yoo Chang-Young, Kang Seong-Min, Choi Seong-Wook

机构信息

Department of Smart Health Science and Technology, Kangwon National University, Chuncheon-Si, 24341, Korea.

Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon-Si, 24341, Korea.

出版信息

Biomed Eng Online. 2025 Jul 7;24(1):83. doi: 10.1186/s12938-025-01414-4.

Abstract

Implementing counter-pulsation (CP) control in pulsatile extracorporeal membrane oxygenator (p-ECMO) systems offers a refined approach to mitigate risks commonly associated with conventional ECMOs. To attain CP between the p-ECMO and heart, accurate detection of heartbeats within blood pressure (BP) waveform data becomes imperative, especially in situations where measuring electrocardiograms (ECGs) are difficult or impractical. In this study, a cumulative algorithm incorporating filter-type neural networks was developed to distinguish heartbeats from other pulse signals generated by the p-ECMO, reflections, or motion artifacts in the BP data. A control system was implemented using the cumulative algorithm that detects the heart rate (HR) and maintains a proper interval between the p-ECMO's pulses and heart beats, thereby achieving CP. To ensure precise circulatory support control, the p-ECMO setup was connected to a mock circulation system, with the human BP waveforms being replicated using a heart model. The algorithm could maintain CP perfectly when the HR remained constant; however, owing to a 0.48-s delay from the HR detection to CP control, the success rate of the CP control decreases when a sudden increase in the HR occurred. In fact, when the HR varied by ± 5 bpm every minute, the CP success rate dropped to 78.62%; however, this was still higher as compared to the 25.75% success rate achieved when no control was applied.

摘要

在搏动性体外膜肺氧合(p-ECMO)系统中实施反搏(CP)控制,为降低传统体外膜肺氧合常见风险提供了一种精细方法。为了在p-ECMO和心脏之间实现CP,在血压(BP)波形数据中准确检测心跳变得至关重要,尤其是在测量心电图(ECG)困难或不切实际的情况下。在本研究中,开发了一种结合滤波器型神经网络的累积算法,以区分心跳与p-ECMO产生的其他脉冲信号、反射或BP数据中的运动伪影。使用累积算法实现了一个控制系统,该系统检测心率(HR)并维持p-ECMO脉冲与心跳之间的适当间隔,从而实现CP。为确保精确的循环支持控制,将p-ECMO装置连接到模拟循环系统,使用心脏模型复制人体BP波形。当HR保持恒定时,该算法可以完美地维持CP;然而,由于从HR检测到CP控制存在0.48秒的延迟,当HR突然增加时,CP控制的成功率会降低。事实上,当HR每分钟变化±5次/分钟时,CP成功率降至78.62%;然而,与未进行控制时25.75%的成功率相比,这一成功率仍然更高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验