Xie Xuan, Yang Zhipeng, Zhao Chengqian, Song Pengfei, Wu Guoqing, Shi Zhifeng, Yu Jinhua
College of Biomedical Engineering, Fudan University, Shanghai, China.
Henan Academy of Sciences, Zhengzhou, China.
Ultrasound Med Biol. 2025 Sep;51(9):1537-1546. doi: 10.1016/j.ultrasmedbio.2025.05.026. Epub 2025 Jul 7.
Surgical resection is the standard treatment for glioma. While gross tumor regions can be identified, microscopic infiltration is often elusive without histopathology. Developing real-time techniques to approximate gold-standard boundaries intraoperatively is crucial for surgical accuracy and patient outcomes.
We propose a ultrasound signal-guided two-stage spatiotemporal feature-aware weak supervision network for glioma infiltration boundaries, utilizing nude mouse pathological annotations as reference standards. In Stage 1, a spatio-temporal feature extraction module generates pseudo-boundary masks through multi-constraint learning, effectively translating the ultrasound radio frequency signal into anatomically plausible boundary probability distributions. Building upon these masks as dynamic anatomical priors, Stage 2 establishes cross-task reinforcement between tumor classification and boundary refinement in an end-to-end architecture. This cross-task synergy enhances localization accuracy with limited labels, enabling annotation-efficient and real-time intraoperative localization.
Trained on 3400 intraoperative ultrasound frames (1400 tumor/2000 normal) with frame-level signal labels, the model was evaluated on a test set comprising 680 nude mouse frames (280 tumor/400 normal) using pathological annotations. For tumor/normal frame differentiation, the model achieved an accuracy of 0.985, AUC of 0.990, sensitivity of 1.000, and specificity of 0.975. Boundary recognition yielded a Dice coefficient of 0.814, intersection over union of 0.690, Hausdorff distance of 25.088, and average surface distance of 8.359 against histopathology.
Our method enabled accurate tumor localization with infiltration boundaries and tumor sizes closely matching the pathological gold standard, outperforming preoperative MRI. This approach offers a reliable solution for intraoperative ultrasound-assisted tumor localization, laying the foundation for clinical validation.
手术切除是胶质瘤的标准治疗方法。虽然可以识别大体肿瘤区域,但在没有组织病理学的情况下,微观浸润往往难以捉摸。开发实时技术以在术中近似金标准边界对于手术准确性和患者预后至关重要。
我们提出了一种用于胶质瘤浸润边界的超声信号引导的两阶段时空特征感知弱监督网络,利用裸鼠病理注释作为参考标准。在第一阶段,一个时空特征提取模块通过多约束学习生成伪边界掩码,有效地将超声射频信号转换为解剖学上合理的边界概率分布。基于这些掩码作为动态解剖学先验,第二阶段在端到端架构中建立肿瘤分类和边界细化之间的跨任务强化。这种跨任务协同作用在有限标签的情况下提高了定位准确性,实现了注释高效的实时术中定位。
该模型在包含3400个术中超声帧(1400个肿瘤/2000个正常)的数据集上进行训练,这些帧带有帧级信号标签,并使用病理注释在包含680个裸鼠帧(280个肿瘤/400个正常)的测试集上进行评估。对于肿瘤/正常帧的区分,该模型的准确率为0.985,AUC为0.990,灵敏度为1.000,特异性为0.975。与组织病理学相比,边界识别的Dice系数为0.814,交并比为0.690,豪斯多夫距离为25.088,平均表面距离为8.359。
我们的方法能够实现准确的肿瘤定位,其浸润边界和肿瘤大小与病理金标准密切匹配,优于术前MRI。这种方法为术中超声辅助肿瘤定位提供了可靠的解决方案,为临床验证奠定了基础。