Lu Gang, Ma Rui, Zhao Yuanyuan, Wang Dianyu, Shang Wentao, Chen Huaguo, Khan Shahid Ali, Li Ming, Saiz Eduardo
Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA.
School of Energy and Environment, City University of Hong Kong, Hong Kong, China.
Nat Commun. 2025 Aug 20;16(1):7754. doi: 10.1038/s41467-025-63123-9.
Developing strong, thermally resistant adhesives for load-bearing applications remains challenging. Here we report a class of solution-sheared supramolecular oligomers that exhibit exceptional adhesive strength and toughness across a broad temperature range. These adhesives achieve a debonding work up to 23.6 kN/m and a lap shear strength exceeding 30.6 MPa, surpassing commercial structural adhesives by up to eightfold on metal and glass surfaces. Impressively, they retain a lap shear strength above 21 MPa even at 120 °C, outperforming current leading commercial alternatives. This performance arises from hierarchical nanostructures formed during solution shearing, which create enlarged, ordered nanocrystals and aligned nanofibrils within the bulk, enhancing mechanical robustness and toughness. Simultaneously, hydrogen-bonded nanocrystals anchored at the surface significantly strengthen interfacial adhesion. This multiscale structural organization enables thermal tolerance, crack resistance, and efficient energy dissipation, setting a new paradigm for high-performance, reusable adhesives capable of multiple rebonding cycles. Our work demonstrates how solution-shearing simultaneously optimizes adhesion chemistry and multiscale nano/microstructural control, achieving synergistic improvements in interfacial adhesion and bulk cohesion.
开发用于承重应用的高强度、耐热粘合剂仍然具有挑战性。在此,我们报告了一类通过溶液剪切制备的超分子低聚物,它们在很宽的温度范围内都表现出卓越的粘合强度和韧性。这些粘合剂的脱粘功高达23.6kN/m,搭接剪切强度超过30.6MPa,在金属和玻璃表面上比商业结构粘合剂高出多达八倍。令人印象深刻的是,即使在120°C时,它们的搭接剪切强度仍保持在21MPa以上,优于目前领先的商业替代品。这种性能源于溶液剪切过程中形成的分级纳米结构,这些结构在本体中产生了更大、有序的纳米晶体和排列的纳米纤维,增强了机械强度和韧性。同时,锚定在表面的氢键纳米晶体显著增强了界面粘附力。这种多尺度结构组织实现了耐热性、抗裂性和高效能量耗散,为能够进行多次重新粘合循环的高性能、可重复使用粘合剂树立了新的范例。我们的工作展示了溶液剪切如何同时优化粘合化学和多尺度纳米/微观结构控制,实现界面粘附力和本体内聚力的协同改进。