Suppr超能文献

使用机器学习对移植后肝细胞癌模型进行多伦多复发推断的验证。

Validation of the Toronto recurrence inference using machine-learning for post-transplant hepatocellular carcinoma model.

作者信息

Li Zhihao, Chen Itsuko Chih-Yi, Centonze Leonardo, Magyar Christian T J, Choi Woo Jin, Ivanics Tommy, O'Kane Grainne M, Vogel Arndt, Erdman Lauren, De Carlis Luciano, Lerut Jan, Lai Quirino, Agopian Vatche G, Mehta Neil, Chen Chao-Long, Sapisochin Gonzalo

机构信息

HBP & Multi-Organ Transplant Program, University Health Network, Toronto, Canada.

Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.

出版信息

Commun Med (Lond). 2025 Jul 9;5(1):284. doi: 10.1038/s43856-025-00994-5.

Abstract

BACKGROUND

Organ shortages require prioritizing hepatocellular carcinoma (HCC) patients with the highest survival benefit for allografts. While traditional models like AFP, MORAL, and HALT-HCC are commonly used for recurrence risk prediction, the TRIUMPH model, which uses machine learning, has shown superior performance. This study aims to externally validate the model.

METHODS

The cohort included 2844 HCC patients who underwent liver transplantation at six international centers from 2000-2022. The TRIUMPH model utilized a regularized Cox proportional hazards approach with a penalty term for coefficient adjustment. Discrimination was assessed using the c-index, and clinical utility was evaluated via decision curve analysis.

RESULTS

The most common liver diseases are hepatitis C (49%) and hepatitis B (27%). At listing, 84% meets the Milan criteria, and 91% are within criteria at transplant. Median model for end-stage liver disease score is 10 (IQR:8-14), alpha-fetoprotein level 8 ng/mL (IQR:4-25), and tumor size 2 cm (IQR:1.1-3.0). Living donor grafts are used in 24% of cases. Recurrence rate is 9.1% with a median time to recurrence of 17.5 months. Recurrence-free survival rates at 1/3/5 years are 95.7%/89.5%/87.7%, respectively. The TRIUMPH model achieves the highest c-index (0.71), outperforming MORAL (0.61, p = 0.049) and AFP (0.61, p = 0.04), though not significantly better than HALT-HCC (0.67, p = 0.28). TRIUMPH shows superior clinical utility up to a threshold of 0.6.

CONCLUSIONS

The TRIUMPH model demonstrates good accuracy and clinical utility in predicting post-transplant HCC recurrence. Its integration into organ allocation could improve transplantation outcomes.

摘要

背景

器官短缺要求将对同种异体移植具有最高生存获益的肝细胞癌(HCC)患者列为优先考虑对象。虽然甲胎蛋白(AFP)、MORAL和HALT - HCC等传统模型常用于复发风险预测,但采用机器学习的TRIUMPH模型已显示出卓越的性能。本研究旨在对该模型进行外部验证。

方法

该队列包括2000年至2022年在六个国际中心接受肝移植的2844例HCC患者。TRIUMPH模型采用正则化Cox比例风险方法,并带有用于系数调整的惩罚项。使用c指数评估区分度,并通过决策曲线分析评估临床实用性。

结果

最常见的肝脏疾病是丙型肝炎(49%)和乙型肝炎(27%)。列入名单时,84%的患者符合米兰标准,91%的患者在移植时符合标准。终末期肝病评分的中位数为10(四分位间距:8 - 14),甲胎蛋白水平为8 ng/mL(四分位间距:4 - 25),肿瘤大小为2 cm(四分位间距:1.1 - 3.0)。24%的病例使用活体供体移植物。复发率为9.1%,复发的中位时间为17.5个月。1/3/5年的无复发生存率分别为95.7%/89.5%/87.7%。TRIUMPH模型实现了最高的c指数(0.71),优于MORAL(0.61,p = 0.049)和AFP(0.61,p = 0.04),但并不显著优于HALT - HCC(0.67,p = 0.28)。TRIUMPH在阈值为0.6时显示出卓越的临床实用性。

结论

TRIUMPH模型在预测移植后HCC复发方面显示出良好的准确性和临床实用性。将其纳入器官分配可改善移植结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b918/12238485/fd26979ff850/43856_2025_994_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验