Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA.
Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.
Genome Med. 2021 Apr 21;13(1):56. doi: 10.1186/s13073-021-00872-4.
Preclinical studies and early clinical trials have shown that targeting cancer neoantigens is a promising approach towards the development of personalized cancer immunotherapies. DNA vaccines can be rapidly and efficiently manufactured and can integrate multiple neoantigens simultaneously. We therefore sought to optimize the design of polyepitope DNA vaccines and test optimized polyepitope neoantigen DNA vaccines in preclinical models and in clinical translation.
We developed and optimized a DNA vaccine platform to target multiple neoantigens. The polyepitope DNA vaccine platform was first optimized using model antigens in vitro and in vivo. We then identified neoantigens in preclinical breast cancer models through genome sequencing and in silico neoantigen prediction pipelines. Optimized polyepitope neoantigen DNA vaccines specific for the murine breast tumor E0771 and 4T1 were designed and their immunogenicity was tested in vivo. We also tested an optimized polyepitope neoantigen DNA vaccine in a patient with metastatic pancreatic neuroendocrine tumor.
Our data support an optimized polyepitope neoantigen DNA vaccine design encoding long (≥20-mer) epitopes with a mutant form of ubiquitin (Ub) fused to the N-terminus for antigen processing and presentation. Optimized polyepitope neoantigen DNA vaccines were immunogenic and generated robust neoantigen-specific immune responses in mice. The magnitude of immune responses generated by optimized polyepitope neoantigen DNA vaccines was similar to that of synthetic long peptide vaccines specific for the same neoantigens. When combined with immune checkpoint blockade therapy, optimized polyepitope neoantigen DNA vaccines were capable of inducing antitumor immunity in preclinical models. Immune monitoring data suggest that optimized polyepitope neoantigen DNA vaccines are capable of inducing neoantigen-specific T cell responses in a patient with metastatic pancreatic neuroendocrine tumor.
We have developed and optimized a novel polyepitope neoantigen DNA vaccine platform that can target multiple neoantigens and induce antitumor immune responses in preclinical models and neoantigen-specific responses in clinical translation.
临床前研究和早期临床试验表明,针对癌症新生抗原是开发个性化癌症免疫疗法的一种很有前途的方法。DNA 疫苗可以快速有效地制造,并可以同时整合多个新生抗原。因此,我们试图优化多表位 DNA 疫苗的设计,并在临床前模型和临床转化中测试优化的多表位新抗原 DNA 疫苗。
我们开发并优化了一种针对多个新生抗原的 DNA 疫苗平台。多表位 DNA 疫苗平台首先在体外和体内使用模型抗原进行优化。然后,我们通过基因组测序和基于计算的新抗原预测管道在临床前乳腺癌模型中鉴定新抗原。设计了针对小鼠乳腺癌 E0771 和 4T1 的优化多表位新抗原 DNA 疫苗,并在体内测试了其免疫原性。我们还在一名转移性胰腺神经内分泌肿瘤患者中测试了一种优化的多表位新抗原 DNA 疫苗。
我们的数据支持一种优化的多表位新抗原 DNA 疫苗设计,该设计编码带有泛素(Ub)突变形式的长(≥20 个氨基酸)表位,融合到 N 端进行抗原加工和呈递。优化的多表位新抗原 DNA 疫苗具有免疫原性,并在小鼠中产生了强大的新抗原特异性免疫反应。优化的多表位新抗原 DNA 疫苗产生的免疫反应的幅度与针对相同新抗原的合成长肽疫苗相似。当与免疫检查点阻断治疗联合使用时,优化的多表位新抗原 DNA 疫苗能够在临床前模型中诱导抗肿瘤免疫。免疫监测数据表明,优化的多表位新抗原 DNA 疫苗能够在转移性胰腺神经内分泌肿瘤患者中诱导新抗原特异性 T 细胞反应。
我们开发并优化了一种新型多表位新抗原 DNA 疫苗平台,该平台可以针对多个新抗原,并在临床前模型中诱导抗肿瘤免疫反应,在临床转化中诱导新抗原特异性反应。