Suppr超能文献

SFMANet:一种用于中风病灶分割的空间频率多尺度注意力网络。

SFMANet: A Spatial-Frequency multi-scale attention network for stroke lesion segmentation.

作者信息

Li Hualing, Wu Jianqi, Zhang Yonglai, Wang Lei

机构信息

School of Software, North University of China, Taiyuan, Shanxi, China.

出版信息

Sci Rep. 2025 Jul 8;15(1):24560. doi: 10.1038/s41598-025-10506-z.

Abstract

In neuroimaging analysis, accurately delineating stroke lesion areas is crucial for assessing rehabilitation outcomes. However, the lesion areas typically exhibit irregular shapes and unclear boundaries, and the signal intensity of the lesion may closely resemble that of the surrounding healthy brain tissue. This makes it difficult to distinguish lesions from normal tissues, thereby increasing the complexity of the lesion segmentation task. To address these challenges, we propose a novel method called the Spatial-Frequency Multi-Scale Attention Network (SFMANet). Based on the UNet architecture, SFMANet incorporates Spatial-Frequency Gating Units (SFGU) and Dual-axis Multi-scale Attention Units (DMAU) to tackle the segmentation difficulties posed by irregular lesion shapes and blurred boundaries. SFGU enhances feature representation through gating mechanisms and effectively uses redundant information, while DMAU improves the positioning accuracy of image edges by integrating multi-scale context information and better allocates the weights of global and local information to strengthen the interaction between features. Additionally, we introduce an Information Enhancement Module (IEM) to reduce information loss during deep network propagation and establish long-range dependencies. We performed extensive experiments on the ISLES 2022 and ATLAS datasets and compared our model's performance with that of existing methods. The experimental results demonstrate that SFMANet effectively captures the edge details of stroke lesions and outperforms other methods in lesion segmentation tasks.

摘要

在神经影像学分析中,准确勾勒中风病变区域对于评估康复结果至关重要。然而,病变区域通常呈现不规则形状且边界不清晰,并且病变的信号强度可能与周围健康脑组织的信号强度非常相似。这使得难以将病变与正常组织区分开来,从而增加了病变分割任务的复杂性。为应对这些挑战,我们提出了一种名为空间频率多尺度注意力网络(SFMANet)的新方法。基于UNet架构,SFMANet结合了空间频率门控单元(SFGU)和双轴多尺度注意力单元(DMAU),以解决由不规则病变形状和模糊边界带来的分割困难。SFGU通过门控机制增强特征表示并有效利用冗余信息,而DMAU通过整合多尺度上下文信息提高图像边缘的定位精度,并更好地分配全局和局部信息的权重以加强特征之间的相互作用。此外,我们引入了一个信息增强模块(IEM)来减少深度网络传播过程中的信息损失并建立长程依赖关系。我们在ISLES 2022和ATLAS数据集上进行了广泛的实验,并将我们模型的性能与现有方法的性能进行了比较。实验结果表明,SFMANet有效地捕捉了中风病变的边缘细节,并且在病变分割任务中优于其他方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验