Saidu Muhammad Bashir, Moreira Irina S, Amorim Catarina L, Wu Rongben, Ho Yuen-Wa, Fang James Kar-Hei, Castro Paula M L, Gonçalves David
Institute of Science and Environment, University of Saint Joseph, Macao SAR, People's Republic of China.
CBQF-Centro de Biotecnologia e Química Fina -Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal.
Environ Technol. 2025 Jul 9:1-23. doi: 10.1080/09593330.2025.2521762.
The biodegradation of Polyethylene terephthalate (PET) is important due to the environmental impact of plastic waste. This study investigates the degradation of PET films in soil microcosms, with and without mangrove plants, and with mangrove plants bioaugmented with a bacterial consortium ( sp.- GPB12 and sp.- WTP31B-5) while following the evolution of soil microcosm microbiome. The ability of bacterial consortia retrieved from soil microcosms of each tested condition to degrade PET intermediates - bis(2-hydroxyethyl) terephthalate (BHET), terephthalic acid (TPA), and monoethylene glycol (MEG) was also assessed. In the microcosms' assays with mangrove plants, variations in functional groups and surface morphology detected by FTIR and SEM analysis indicated PET degradation. Soil microcosms microbiome evolved differently according to the conditions imposed, with dominance of phylum Proteobacteria in all final microcosms. After 270 days, bacterial consortia retrieved from all soil microcosms revealed to be able to completely degrade TPA within three days. MEG degradation reached ca. 84% using the consortium retrieved from the microcosm with bioaugmented mangrove plants. BHETdegradation was ca. 96% with the consortium obtained from the microcosm with non-bioaugmented mangrove plants. These intermediates are key molecules in PET degradation pathways; thus, their degradation is an indicator of biodegradation potential. To the best of authors' knowledge, this is the first report on biodegradation of PET, BHET, TPA, and MEG by microbial community from mangrove soil, providing insights into key taxa involved in PET degradation. These findings can pave a way to develop bioremediation strategies and more efficient waste management solutions.
由于塑料垃圾对环境的影响,聚对苯二甲酸乙二酯(PET)的生物降解具有重要意义。本研究调查了PET薄膜在有和没有红树林植物的土壤微观环境中的降解情况,以及在红树林植物通过细菌联合体(sp.-GPB12和sp.-WTP31B-5)进行生物强化的情况下,同时跟踪土壤微观环境微生物群落的演变。还评估了从每个测试条件的土壤微观环境中获取的细菌联合体降解PET中间体——对苯二甲酸双(2-羟乙基)酯(BHET)、对苯二甲酸(TPA)和单乙二醇(MEG)的能力。在有红树林植物的微观环境试验中,通过傅里叶变换红外光谱(FTIR)和扫描电子显微镜(SEM)分析检测到的官能团和表面形态变化表明PET发生了降解。土壤微观环境微生物群落根据所施加的条件而有不同的演变,在所有最终的微观环境中变形菌门占主导地位。270天后,从所有土壤微观环境中获取的细菌联合体显示能够在三天内完全降解TPA。使用从生物强化红树林植物的微观环境中获取的联合体,MEG降解率达到约84%。从没有生物强化红树林植物的微观环境中获得的联合体对BHET的降解率约为96%。这些中间体是PET降解途径中的关键分子;因此,它们的降解是生物降解潜力的一个指标。据作者所知,这是关于红树林土壤微生物群落对PET、BHET、TPA和MEG进行生物降解的首次报告,为参与PET降解的关键分类群提供了见解。这些发现可为开发生物修复策略和更有效的废物管理解决方案铺平道路。