Zhang Wenhao, Kwiecinski Jacek, Shanbhag Aakash, Jh Miller Robert, Ramirez Giselle, Yi Jirong, Han Donghee, Dey Damini, Grodecka Dominika, Grodecki Kajetan, Lemley Mark, Kavanagh Paul, Liang Joanna X, Zhou Jianhang, Builoff Valerie, Hainer Jon, Carre Sylvain, Barrett Leanne, Einstein Andrew J, Knight Stacey, Mason Steve, Le Viet T, Acampa Wanda, Wopperer Samuel, Chareonthaitawee Panithaya, Berman Daniel S, Di Carli Marcelo F, Slomka Piotr J
medRxiv. 2025 Jun 30:2025.06.19.25329944. doi: 10.1101/2025.06.19.25329944.
Positron emission tomography (PET)/CT for myocardial perfusion imaging (MPI) provides multiple imaging biomarkers, often evaluated separately. We developed an artificial intelligence (AI) model integrating key clinical PET MPI parameters to improve the diagnosis of obstructive coronary artery disease (CAD).
From 17,348 patients undergoing cardiac PET/CT across four sites, we retrospectively enrolled 1,664 subjects who had invasive coronary angiography within 180 days and no prior CAD. Deep learning was used to derive coronary artery calcium score (CAC) from CT attenuation correction maps. XGBoost machine learning model was developed using data from one site to detect CAD, defined as left main stenosis ≥50% or ≥70% in other arteries. The model utilized 10 image-derived parameters from clinical practice: CAC, stress/rest left ventricle ejection fraction, stress myocardial blood flow (MBF), myocardial flow reserve (MFR), ischemic and stress total perfusion deficit (TPD), transient ischemic dilation ratio, rate pressure product, and sex. Generalizability was evaluated in the remaining three sites-chosen to maximize testing power and capture inter-site variability-and model performance was compared with quantitative analyses using the area under the receiver operating characteristic curve (AUC). Patient-specific predictions were explained using shapley additive explanations.
There was a 61% and 53% CAD prevalence in the training (n=386) and external testing (n=1,278) set, respectively. In the external evaluation, the AI model achieved a higher AUC (0.83 [95% confidence interval (CI): 0.81-0.85]) compared to clinical score by experienced physicians (0.80 [0.77-0.82], p=0.02), ischemic TPD (0.79 [0.77-0.82], p<0.001), MFR (0.75 [0.72-0.78], p<0.001), and CAC (0.69 [0.66-0.72], p<0.001). The models' performances were consistent in sex, body mass index, and age groups. The top features driving the prediction were stress/ischemic TPD, CAC, and MFR.
AI integrating perfusion, flow, and CAC scoring improves PET MPI diagnostic accuracy, offering automated and interpretable predictions for CAD diagnosis.
用于心肌灌注成像(MPI)的正电子发射断层扫描(PET)/CT可提供多种成像生物标志物,这些标志物通常是单独评估的。我们开发了一种人工智能(AI)模型,该模型整合了关键的临床PET MPI参数,以改善对阻塞性冠状动脉疾病(CAD)的诊断。
在四个研究地点的17348例接受心脏PET/CT检查的患者中,我们回顾性纳入了1664例在180天内接受了有创冠状动脉造影且既往无CAD的受试者。使用深度学习从CT衰减校正图中得出冠状动脉钙化评分(CAC)。利用来自一个研究地点的数据开发了XGBoost机器学习模型,以检测CAD,CAD定义为左主干狭窄≥50%或其他动脉狭窄≥70%。该模型利用了临床实践中10个源自图像的参数:CAC、静息/负荷左心室射血分数、负荷心肌血流量(MBF)、心肌血流储备(MFR)、缺血和负荷总灌注缺损(TPD)、短暂性缺血扩张率、心率血压乘积以及性别。在其余三个研究地点评估了模型的通用性,选择这三个地点是为了最大化测试效能并捕捉研究地点间的差异,同时使用受试者操作特征曲线下面积(AUC)将模型性能与定量分析进行比较。使用夏普利加法解释对患者特异性预测进行了解释。
在训练集(n = 386)和外部测试集(n = 1278)中,CAD患病率分别为61%和53%。在外部评估中,与经验丰富的医生的临床评分(0.80 [95%置信区间(CI):0.77 - 0.82],p = 0.02)、缺血性TPD(0.79 [0.77 - 0.82],p < 0.001)、MFR(0.75 [0.72 - 0.78],p < 0.001)和CAC(0.69 [0.66 - 0.72],p < 0.001)相比,AI模型获得了更高的AUC(0.83 [95%CI:0.81 - 0.85])。模型在性别、体重指数和年龄组中的表现一致。驱动预测的主要特征是负荷/缺血性TPD、CAC和MFR。
整合灌注、血流和CAC评分的AI提高了PET MPI的诊断准确性,为CAD诊断提供了自动化且可解释的预测。