Yousofvand Reza, Handy Gregory, Tithof Jeffrey
Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455.
School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455.
bioRxiv. 2025 Jul 3:2025.07.01.662658. doi: 10.1101/2025.07.01.662658.
Effective clearance of amyloid- ) from the brain is essential for preventing neurodegenerative diseases such as Alzheimer's. A significant portion of this clearance occurs through the blood-brain barrier (BBB) via receptor-mediated transport. However, current models fail to capture the complex kinetics and spatial heterogeneity of receptors at the BBB. In this study, we derive a novel boundary condition that accounts for finite receptor kinetics, receptor density, and bidirectional transport across the BBB. Specifically, we develop a nonlinear homogenized boundary condition that ensures mass conservation and incorporates receptor-mediated Michaelis-Menten kinetics. We then implement this boundary condition in a cylindrical geometry representing a capillary surrounded by brain tissue. After verifying that the model matches an analytical steady state solution that we derive and that it yields realistic blood concentrations, we explore how realistic variations in parameter values drive changes in both steady state concentration and transient dynamics. Simulations and analytical results reveal that concentrations in the brain are sensitive to receptor number ratios, while concentrations in the blood are primarily affected by the blood clearance rate. Additionally, we use the model to investigate clearance during sequential sleep cycles and due to a pathological phenomenon, spreading depolarization. This work presents the first biophysically consistent boundary condition for transport across the BBB, offering a powerful tool for studying brain waste clearance under both physiological and pathological conditions.
从大脑中有效清除淀粉样蛋白-β对于预防诸如阿尔茨海默病等神经退行性疾病至关重要。这种清除的很大一部分是通过血脑屏障(BBB)经受体介导的转运发生的。然而,目前的模型未能捕捉血脑屏障处受体的复杂动力学和空间异质性。在本研究中,我们推导出一种新的边界条件,该条件考虑了有限的受体动力学、受体密度以及跨血脑屏障的双向转运。具体而言,我们开发了一种非线性均匀化边界条件,该条件确保质量守恒并纳入受体介导的米氏动力学。然后,我们在代表被脑组织包围的毛细血管的圆柱形几何结构中实施此边界条件。在验证该模型与我们推导的解析稳态解相匹配且能产生现实的血液浓度后,我们探究参数值的现实变化如何驱动稳态浓度和瞬态动力学的变化。模拟和分析结果表明,大脑中的浓度对受体数量比敏感,而血液中的浓度主要受血液清除率影响。此外,我们使用该模型研究连续睡眠周期期间以及由于一种病理现象——扩散性去极化导致的β淀粉样蛋白清除情况。这项工作提出了首个用于跨血脑屏障的β淀粉样蛋白转运的生物物理上一致的边界条件,为研究生理和病理条件下的脑废物清除提供了一个强大的工具。