Liao Chengchao, Li Lu, Deng Min, Song Kang, Wu Fengchang
State Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
Environ Sci Technol. 2025 Aug 5;59(30):15816-15827. doi: 10.1021/acs.est.5c03331. Epub 2025 Jul 9.
Climate warming and eutrophication reshape nitrogen cycling in lakes, yet their combined impacts on lacustrine NO source-sink dynamics and underlying microbial drivers remain poorly resolved. Here, a controlled microcosm experiment was constructed to explore the interaction and microbial mechanism of warming (+4 °C) and nutrient enrichment (low, middle, and high nutrient gradients) to NO emissions. We demonstrate that, compared to warming or eutrophication alone, their synergistic interaction amplified NO flux by 100-fold and 3.5-fold, respectively. Nutrient loading exerts a dominant control over the regulation of NO dynamics, surpassing that of warming. Mechanistically, eutrophication elevates substrate availability, while warming enhances microbial utilization thresholds, synergistically escalating NO emissions. Microbial analyses reveal that nutrient enrichment increases ( + )/ and abundance, whereas warming stimulates microbial enzyme activity. These dual stressors collaboratively reshape the microbial community structure, accelerating NO metabolic rates. In addition, thermal stimulation enhances the gas diffusion coefficient and accelerates the release of NO from the aqueous phase. Warming could cause the NO emissions shift from a unimodal nonlinear pattern to linearity with elevated eutrophic level. Our findings establish a mechanistic framework linking climate-nutrient interactions to microbial N-cycling, providing critical insights for predicting and mitigating lacustrine NO emissions in warming ecosystems. Warming shifts lake NO emissions from nonlinear to linear patterns with increased nutrient levels via microbial dynamics, informing nutrient management for climate-resilient waters.
气候变暖和富营养化重塑了湖泊中的氮循环,然而它们对湖泊一氧化氮(NO)源汇动态及潜在微生物驱动因素的综合影响仍未得到很好的解决。在此,构建了一个受控的微观实验,以探究升温(+4℃)和营养物富集(低、中、高营养梯度)对NO排放的相互作用及微生物机制。我们证明,与单独的升温或富营养化相比,它们的协同相互作用分别使NO通量放大了100倍和3.5倍。营养物负荷对NO动态的调节起主导控制作用,超过了升温的影响。从机制上讲,富营养化提高了底物可用性,而升温提高了微生物利用阈值,协同提高了NO排放。微生物分析表明,营养物富集增加了(+)/和丰度,而升温刺激了微生物酶活性。这两种压力源共同重塑了微生物群落结构,加速了NO代谢速率。此外,热刺激提高了气体扩散系数,加速了NO从水相的释放。升温可能导致NO排放从单峰非线性模式转变为随着富营养化水平升高呈线性变化。我们的研究结果建立了一个将气候-营养物相互作用与微生物氮循环联系起来的机制框架,为预测和减轻变暖生态系统中湖泊NO排放提供了关键见解。升温通过微生物动态使湖泊NO排放随着营养水平的增加从非线性模式转变为线性模式,为适应气候变化的水体营养管理提供了依据。