Wan Li Pear, Li Yuwei, Zhao Shuhua, Zhao Shiping, Song Ning-Ning, Yuan Kai-Ming, Yang Cuiping, Ding Yu-Qiang, Mao Bingyu, Sheng Nengyin, Tao Wucheng, Ma Pengcheng
Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, China.
State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
Proc Natl Acad Sci U S A. 2025 Jul 15;122(28):e2426375122. doi: 10.1073/pnas.2426375122. Epub 2025 Jul 9.
The maintenance of excitatory synaptic activity is crucial for cognitive function and genetic mutations are responsible for the pathogenesis of related brain disorders. However, the roles of these pathogenic factors in synaptic dysregulation and cognitive malfunction are still poorly understood. In this study, a conditional knockout mouse model lacking -an X-linked gene implicated in ZC4H2-associated rare disorder (ZARD) -in forebrain excitatory neurons is generated and these mice exhibit cognitive malfunction, recapitulating the intellectual disability manifestation of ZARD. Mechanistically, ZC4H2 harbors a protein interaction network with key excitatory synaptic regulators and ZC4H2 interacts directly with AMPA receptors (AMPARs) and regulates their ubiquitination at the postsynaptic sites, thereby maintaining AMPARs protein stability and synaptic expression. ZC4H2 deficiency specifically and aberrantly increases AMPAR-mediated excitatory synaptic transmission and impairs synaptic plasticity of long-term potentiation. More importantly, pharmacological treatment with perampanel, an AMPAR-specific antagonist, successfully restores the excitatory synaptic activity and cognitive function of ZC4H2-deficient mice. Together, we establish that ZC4H2 is a postsynaptic regulator for AMPARs and excitatory synaptic activity and highlight that the dysregulation of these biological processes is a crucial etiology underlying ZARD-associated intellectual disability.
兴奋性突触活动的维持对认知功能至关重要,而基因突变是相关脑部疾病发病机制的原因。然而,这些致病因素在突触失调和认知功能障碍中的作用仍知之甚少。在本研究中,构建了一种条件性敲除小鼠模型,该模型在前脑兴奋性神经元中缺乏一个与ZC4H2相关的罕见疾病(ZARD)有关的X连锁基因,这些小鼠表现出认知功能障碍,重现了ZARD的智力残疾表现。从机制上讲,ZC4H2包含一个与关键兴奋性突触调节因子的蛋白质相互作用网络,并且ZC4H2直接与AMPA受体(AMPARs)相互作用并调节其在突触后位点的泛素化,从而维持AMPARs的蛋白质稳定性和突触表达。ZC4H2缺乏特异性地异常增加了AMPAR介导的兴奋性突触传递,并损害了长时程增强的突触可塑性。更重要的是,用AMPA受体特异性拮抗剂佩罗尼布进行药物治疗成功恢复了ZC4H2缺陷小鼠的兴奋性突触活动和认知功能。总之,我们确定ZC4H2是AMPARs和兴奋性突触活动的突触后调节因子,并强调这些生物学过程的失调是ZARD相关智力残疾的关键病因。