Suppr超能文献

一种具有特定分子捕获功能的稳定锆基金属有机框架用于逆CH/CH分离

A Stable Zr-Based Metal-Organic Framework with Specific Molecule Traps for Reverse CH/CH Separation.

作者信息

Zhu Yueying, Yang Yongli, He Yingying, Guo Menghan, Liu Xinyao, Pang Xinchang, Liu Yunling

机构信息

College of Chemistry & Chemical Engineering, Henan University of Science and Technology, Luoyang 471000, P. R. China.

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.

出版信息

Inorg Chem. 2025 Jul 21;64(28):14724-14730. doi: 10.1021/acs.inorgchem.5c02605. Epub 2025 Jul 9.

Abstract

CH separation from CH/CH binary mixtures is still a great challenge; however, most metal-organic frameworks (MOFs) with high CH/CH selective performance often exhibit low CH adsorption. Herein, a stable MOF based on UiO-68 type () was selected, and single-crystal X-ray crystallography data were obtained in this work. Owing to the large cavities and specific anthracene ring traps, demonstrated high CH adsorption ability and good reverse CH/CH selectivity. Gas adsorption behavior calculations evidenced that multiaromatic surfaces and [Zr(μ-O)(μ-OH)(-COO)] clusters provided more C-H···π and C-H···O interactions compared to CH. In addition, the central anthracene rings formed a molecule trap to provide more and stronger C-H···H-C interactions with CH, which further enhanced the affinity toward CH and led to the reverse selective performance for CH/CH. This work synergized the adsorption ability and separation capacity, which supplied a balance of CH adsorption and CH purification.

摘要

从CH/CH二元混合物中分离CH仍然是一个巨大的挑战;然而,大多数具有高CH/CH选择性的金属有机框架(MOF)通常表现出低CH吸附量。在此,选择了一种基于UiO-68型()的稳定MOF,并在本工作中获得了单晶X射线晶体学数据。由于大的空腔和特定的蒽环陷阱,表现出高CH吸附能力和良好的CH/CH反向选择性。气体吸附行为计算证明,与CH相比,多芳香表面和[Zr(μ-O)(μ-OH)(-COO)]簇提供了更多的C-H···π和C-H···O相互作用。此外,中心蒽环形成了一个分子陷阱,为CH提供了更多更强的C-H···H-C相互作用,这进一步增强了对CH的亲和力,并导致了对CH/CH的反向选择性性能。这项工作协同了吸附能力和分离能力,实现了CH吸附和CH纯化的平衡。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验