Gao Zhongyang, Xing Hongyuan, Shen Yifan, Ding Xin, Xu Shibo, Li Run, Zhang Yijian, Mao Susu, Liu Can, Jin Jiale, Liu Yang, Wang Siyuan, Xing Chunyang, Feng Zhiyun, Li Xigong, Jin Mengran, Wang Yuhai, He Xijing, He Xuelian, Liu Yan, Zhu Xuesong, Liu Yuanyuan, Yang Yang, Wang Yue
Department of Orthopedic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
Department of Neonatology, Children's Hospital of Soochow University, Suzhou 215000, China.
Sci Transl Med. 2025 Jul 9;17(806):eadp1873. doi: 10.1126/scitranslmed.adp1873.
Propriospinal detour pathways facilitate motor recovery after spinal cord injury (SCI). Here, through a screen of epigenetic modulators, we demonstrated that small interfering RNA (siRNA)-mediated knockdown of histone deacetylase 3, delivered by extracellular vesicles (EVsiHDAC3), promoted neurite outgrowth in murine spinal neurons and human induced pluripotent stem cell-derived sensory and motor neurons. To enhance in vivo efficacy, we developed a neurotrophic nanoparticle platform using gelatin methacryloyl microspheres conjugated with an optimized rabies glycoprotein-derived peptide. Spinal delivery of the EVsiHDAC3-loaded platform (oGHDAC3) or adeno-associated virus-mediated neuronal HDAC3 deletion facilitated propriospino-lumbar detour circuit formation and improved locomotion after staggered double hemisection SCI in mice. Chemogenetic silencing of propriospinal relay neurons compromised recovered stepping upon oGHDAC3 treatment. We observed no therapeutic effects of oGHDAC3 after full spinal transection in mice, further suggesting that spared intraspinal circuits serve as the neural substrates for locomotion recovery. Mechanistically, Stat3 deletion in interlesional neurons, combined with mTOR inactivation, abolished the beneficial effects of oGHDAC3. Finally, combining oGHDAC3 with CLP290, a KCC2 agonist, further improved detour circuit functionality, resulting in consistent weight-supported stepping. Our findings suggest that integrating siRNA-mediated HDAC3 inhibition with a neurotropic bionanomaterial platform could be a translatable approach for restoring motor function after incomplete SCI.
脊髓旁绕通路促进脊髓损伤(SCI)后的运动恢复。在此,通过对表观遗传调节剂的筛选,我们证明了由细胞外囊泡递送的小干扰RNA(siRNA)介导的组蛋白去乙酰化酶3敲低(EVsiHDAC3)可促进小鼠脊髓神经元以及人诱导多能干细胞衍生的感觉和运动神经元的神经突生长。为了提高体内疗效,我们开发了一种神经营养纳米颗粒平台,该平台使用与优化的狂犬病糖蛋白衍生肽缀合的甲基丙烯酰化明胶微球。在小鼠进行交错双半切脊髓损伤后,脊髓递送负载EVsiHDAC3的平台(oGHDAC3)或腺相关病毒介导的神经元HDAC3缺失促进了脊髓 - 腰段旁绕回路的形成并改善了运动能力。脊髓中继神经元的化学遗传学沉默损害了oGHDAC3治疗后的恢复性踏步。我们在小鼠全脊髓横断后未观察到oGHDAC3的治疗效果,这进一步表明保留的脊髓内回路是运动恢复的神经基础。从机制上讲,损伤灶内神经元中的Stat3缺失与mTOR失活相结合,消除了oGHDAC3的有益作用。最后,将oGHDAC3与KCC2激动剂CLP290联合使用,进一步改善了旁绕回路功能,导致持续的负重踏步。我们的研究结果表明,将siRNA介导的HDAC3抑制与神经营养生物纳米材料平台相结合可能是一种可转化的方法,用于恢复不完全性脊髓损伤后的运动功能。