Ren Qing, Nan Mengdi, Fu Yuhan, Chen Xiang, Ma Yibing, Shi Yongle, Gao Jie
School of Science, Jiangnan University, Wuxi, Jiangsu, 214122, China.
School of Science, Jiangnan University, Wuxi, Jiangsu, 214122, China.
Biosystems. 2025 Aug;254:105531. doi: 10.1016/j.biosystems.2025.105531. Epub 2025 Jul 7.
Identifying the regulatory relationships between transcription factors and target genes is fundamental to understanding molecular regulatory mechanisms in biological processes including development and disease occurrence. Therefore, resolving the relationships between cis-regulatory elements and genes using single-cell multi-omics data is important for understanding transcriptional regulation. Here, scSAGRN is proposed as a framework for inferring gene regulatory networks from single-cell multi-omics. scSAGRN incorporates spatial association to compute correlations between gene expression and chromatin openness data, connects distal cis-regulatory elements to genes, infers gene regulatory networks and identifies key transcription factors. The approach is benchmarked using real single-cell datasets, and scSAGRN shows superior performance in TF recovery, peak-gene linkage prediction, and TF-gene linkage prediction compared to existing methods. Meanwhile, in human peripheral blood mononuclear cells dataset, mouse cerebral cortex dataset and mouse embryonic brain cells dataset, scSAGRN demonstrates its capability to infer gene regulatory networks and identify transcription factors. Overall, scSAGRN provides a reference for predicting transcriptional regulatory patterns from single-cell multi-omics data.
识别转录因子与靶基因之间的调控关系是理解包括发育和疾病发生在内的生物过程中分子调控机制的基础。因此,利用单细胞多组学数据解析顺式调控元件与基因之间的关系对于理解转录调控至关重要。在此,提出了scSAGRN作为从单细胞多组学推断基因调控网络的框架。scSAGRN纳入空间关联以计算基因表达与染色质开放性数据之间的相关性,将远端顺式调控元件与基因连接起来,推断基因调控网络并识别关键转录因子。该方法使用真实的单细胞数据集进行基准测试,与现有方法相比,scSAGRN在转录因子恢复、峰-基因连锁预测和转录因子-基因连锁预测方面表现出卓越的性能。同时,在人类外周血单核细胞数据集、小鼠大脑皮层数据集和小鼠胚胎脑细胞数据集中,scSAGRN展示了其推断基因调控网络和识别转录因子的能力。总体而言,scSAGRN为从单细胞多组学数据预测转录调控模式提供了参考。