Kittipibul Veraprapas, Van Spall Harriette G C, Jones William Schuyler, Fudim Marat, Mentz Robert J, Anstrom Kevin, Pitt Bertram, Desvigne-Nickens Patrice, Fleg Jerome L, Hage Camilla, James Stefan, Held Claes, Lund Lars, DeVore Adam
Division of Cardiology, Duke University Medical Center, Durham, North Carolina, USA.
Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina, USA.
ESC Heart Fail. 2025 Oct;12(5):3250-3263. doi: 10.1002/ehf2.15366. Epub 2025 Jul 9.
Clinical endpoint classification (CEC)-that is, evaluation of clinical events using pre-defined criteria-is commonly conducted in clinical trial operations to ensure systematic and consistent assessment of endpoints needed to assess the intervention's safety and efficacy. This is particularly relevant for heart failure (HF) trials given the subjective decision-making around hospitalizations and variation in how worsening HF events are managed (both in hospital and in ambulatory settings). Several CEC strategies have been adopted to address the growing need for pragmatic clinical trials that enhance generalizability and minimize research burden on trial sites and patients. This review summarizes common CEC strategies including the traditional approach, investigator-reported endpoints, CEC using real-world data and CEC utilizing large language models. We summarize CEC strategies used in recent HF pragmatic trials and present challenges and considerations for CEC in HF pragmatic trials from the selection of clinical endpoints and data collection to CEC.
临床终点分类(CEC)——即使用预定义标准对临床事件进行评估——在临床试验操作中普遍进行,以确保对评估干预措施安全性和有效性所需的终点进行系统且一致的评估。鉴于围绕住院治疗的主观决策以及心力衰竭(HF)事件恶化的管理方式(包括住院和门诊环境)存在差异,这一点在心力衰竭试验中尤为重要。为满足对务实临床试验日益增长的需求,即提高普遍性并尽量减少试验地点和患者的研究负担,已采用了多种CEC策略。本综述总结了常见的CEC策略,包括传统方法、研究者报告的终点、使用真实世界数据的CEC以及利用大语言模型的CEC。我们总结了近期HF务实试验中使用的CEC策略,并从临床终点的选择、数据收集到CEC,阐述了HF务实试验中CEC面临的挑战和注意事项。