Suppr超能文献

基于数字孪生的深度学习框架,用于智能建筑中的个性化热舒适度预测和节能运行。

Digital twin based deep learning framework for personalized thermal comfort prediction and energy efficient operation in smart buildings.

作者信息

Almadhor Ahmad, Ghazouani Nejib, Bouallegue Belgacem, Kryvinska Natalia, Alsubai Shtwai, Krichen Moez, Hejaili Abdullah Al, Sampedro Gabriel Avelino

机构信息

Department of Computer Engineering and Networks, Jouf University, Sakaka, 72388, Saudi Arabia.

Mining Research Center, Northern Border University, Arar, 73213, Saudi Arabia.

出版信息

Sci Rep. 2025 Jul 9;15(1):24654. doi: 10.1038/s41598-025-10086-y.

Abstract

The regulation of indoor thermal comfort is a critical aspect of smart building design, significantly influencing energy efficiency and occupant well-being. Traditional comfort models, such as Fanger's equation and adaptive approaches, often fall short in capturing individual occupant preferences and the dynamic nature of indoor environmental conditions. To overcome these limitations, we introduce a Digital Twin-driven framework integrated with an advanced attention-based Long Short-Term Memory (LSTM) model specifically tailored for personalised thermal comfort prediction and intelligent HVAC control. The attention mechanism effectively focuses on critical temporal features, enhancing both predictive performance and interpretability. Next, the Digital Twin enables the real-time simulation of indoor environments and occupant responses, facilitating proactive comfort management. We utilise a subset of the ASHRAE Global Thermal Comfort Database II, and extensive pre-processing, including median-based data imputation and feature normalisation, is conducted. The proposed model categorises Thermal Sensation Votes (TSVs) recorded on a 7-point ASHRAE scale into three classes: Uncomfortably Cold (UC) for TSV ≤-1, Neutral (N) for TSV = 0, and Uncomfortably Warm (UW) for TSV ≥+1. The model achieves a test accuracy of 83.8%, surpassing previous state-of-the-art methods. Furthermore, Explainable AI (XAI) techniques, such as SHAP and LIME, are integrated to enhance transparency and interpretability, complemented by scenario-based energy efficiency analyses to evaluate energy-comfort trade-offs. This comprehensive approach provides a robust, interpretable, and energy-efficient solution for occupant-centric HVAC management in smart building systems.

摘要

室内热舒适度的调节是智能建筑设计的关键方面,对能源效率和居住者的福祉有重大影响。传统的舒适度模型,如范格方程和自适应方法,在捕捉个体居住者的偏好和室内环境条件的动态特性方面往往存在不足。为了克服这些局限性,我们引入了一个由数字孪生驱动的框架,该框架集成了一个先进的基于注意力的长短期记忆(LSTM)模型,专门用于个性化热舒适度预测和智能暖通空调控制。注意力机制有效地聚焦于关键的时间特征,提高了预测性能和可解释性。接下来,数字孪生实现了室内环境和居住者反应的实时模拟,便于进行主动的舒适度管理。我们使用了美国供暖、制冷与空调工程师协会(ASHRAE)全球热舒适度数据库II的一个子集,并进行了广泛的预处理,包括基于中位数的数据插补和特征归一化。所提出的模型将在7点ASHRAE量表上记录的热感觉投票(TSV)分为三类:TSV≤-1时为“冷得不舒服”(UC),TSV = 0时为“中性”(N),TSV≥+1时为“热得不舒服”(UW)。该模型的测试准确率达到83.8%,超过了先前的最先进方法。此外,还集成了诸如SHAP和LIME等可解释人工智能(XAI)技术以提高透明度和可解释性,并辅以基于场景的能源效率分析来评估能源与舒适度的权衡。这种综合方法为智能建筑系统中以居住者为中心的暖通空调管理提供了一个强大、可解释且节能的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/effa/12241492/769bb71a9c62/41598_2025_10086_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验