Suppr超能文献

基于多专家混合模型的个人热舒适度分析的数字孪生智慧城市可视化

Digital Twin Smart City Visualization with MoE-Based Personal Thermal Comfort Analysis.

作者信息

Lam Hoang-Khanh, Lam Phuoc-Dat, Ok Soo-Yol, Lee Suk-Hwan

机构信息

Department of Computer Engineering, Dong-A University, Busan 49315, Republic of Korea.

出版信息

Sensors (Basel). 2025 Jan 24;25(3):705. doi: 10.3390/s25030705.

Abstract

Digital twin technology us used to create accurate virtual representations of objects or systems. Digital twins span the object's life cycle and keep updated with real-time data. Therefore, their simulation capabilities can be combined with deep learning to create a system that simulates scenarios, enabling analysis. As cities continue to grow and the demand for sustainable development increases, digital twin technology, combined with AI-driven analysis, will play a critical role in shaping the future of urban environments. The ability to accurately simulate and manage complex systems in real time opens up new possibilities for optimizing energy usage, reducing costs, and improving the quality of life for urban residents. In this study, a digital twin application is built to visualize a smart area in South Korea, utilizing a deep learning model for personal thermal comfort analysis, which can be useful for managing and saving building and household energy consumption. Using Cesium for Unreal, a powerful tool for integrating 3D geospatial data, and leveraging DataSmith to convert 3D data into Unreal Engine format, this study also contributes a roadmap for smart city application development, which is currently considered to be lacking. By creating a robust framework for smart city applications, this research not only addresses current challenges but also lays the groundwork for future innovations in urban planning and management.

摘要

数字孪生技术用于创建物体或系统的精确虚拟表示。数字孪生涵盖物体的生命周期,并通过实时数据进行更新。因此,它们的模拟能力可以与深度学习相结合,创建一个模拟场景的系统,从而实现分析。随着城市不断发展以及对可持续发展的需求增加,数字孪生技术与人工智能驱动的分析相结合,将在塑造城市环境的未来方面发挥关键作用。实时准确模拟和管理复杂系统的能力为优化能源使用、降低成本以及提高城市居民生活质量开辟了新的可能性。在本研究中,构建了一个数字孪生应用程序,以可视化韩国的一个智能区域,利用深度学习模型进行个人热舒适度分析,这对于管理和节约建筑及家庭能源消耗可能会有所帮助。本研究使用用于虚幻引擎的强大3D地理空间数据集成工具Cesium,并利用DataSmith将3D数据转换为虚幻引擎格式,还贡献了一份目前被认为缺乏的智慧城市应用开发路线图。通过为智慧城市应用创建一个强大的框架,本研究不仅解决了当前的挑战,还为城市规划和管理的未来创新奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03c6/11820799/d973c84252ff/sensors-25-00705-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验