Suppr超能文献

基于反射式微扫描光学系统的自监督超分辨率恢复算法研究

Research on self-supervised super resolution restoration algorithm based on reflective micro-scanning optical system.

作者信息

Chen Jian, Wang Yuwei, Ye Xin, Chen Mo, Zhou Qun

机构信息

Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China.

University of Chinese Academy of Sciences, Beijing, 100039, China.

出版信息

Sci Rep. 2025 Jul 9;15(1):24736. doi: 10.1038/s41598-025-09834-x.

Abstract

The features of infrared image such as less details and low SNR become bottleneck of infrared image application. This paper mainly focuses on research of super-resolution restoration algorithm of infrared image based on reflective infrared micro-scanning optical system. Aiming at solving super-resolution restoration problem of infrared image, self-supervised super resolution restoration algorithm is proposed and optimized. Meanwhile, reflective infrared micro-scanning optical system is introduced to break theoretical limit of simple image processing algorithm. And performance of infrared image super-resolution restoration is improved.

摘要

红外图像细节少、信噪比低等特点成为红外图像应用的瓶颈。本文主要围绕基于反射式红外微扫描光学系统的红外图像超分辨率复原算法展开研究。针对红外图像超分辨率复原问题,提出并优化了自监督超分辨率复原算法。同时,引入反射式红外微扫描光学系统以突破简单图像处理算法的理论极限,进而提升红外图像超分辨率复原的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/114d/12241496/faba760080f2/41598_2025_9834_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验