Potyrailo Radislav A, Shan Shiyao, Cheng Baokai
GE Vernova Advanced Research, 1 Research Circle, Niskayuna, NY, 12309, USA.
Mikrochim Acta. 2025 Jul 9;192(8):491. doi: 10.1007/s00604-025-07294-8.
Three designs are shown of photonic nanostructured sensors as second-order analytical instruments. In all three designs, the first independent variable in sensor response is optical wavelength across the visible spectral range. The second independent variable is either (i) illumination angle, (ii) light polarization, or (iii) the operation temperature of the sensor. These illustrative designs of second-order gas sensors bring mathematical understanding to boost the multi-gas resolution achieved by individual material-based sensors through the transducer, material design, appropriate excitation conditions, and data analysis. Results presented should inspire new fundamental research and technological innovations in the areas of gas sensors, optics, materials science, nanofabrication, and data analysis. The strategic approach of expanding the dimensionality of the sensor response described will enable next-generation sensors to perform on par with traditional orthogonal-output analytical instruments, but with a continuous real-time data stream and unobtrusive, energy-efficient designs.
展示了三种光子纳米结构传感器作为二阶分析仪器的设计。在所有这三种设计中,传感器响应中的第一个自变量是可见光谱范围内的光波长。第二个自变量要么是(i)照明角度,(ii)光偏振,要么是(iii)传感器的工作温度。这些二阶气体传感器的示例设计带来了数学理解,以通过换能器、材料设计、适当的激发条件和数据分析来提高基于单个材料的传感器实现的多气体分辨率。所呈现的结果应能激发气体传感器、光学、材料科学、纳米制造和数据分析领域的新基础研究和技术创新。所描述的扩展传感器响应维度的战略方法将使下一代传感器能够与传统的正交输出分析仪器相媲美,但具有连续的实时数据流以及不显眼、节能的设计。