Suppr超能文献

新陈代谢在塑造超过4亿年的酶结构过程中的作用。

The role of metabolism in shaping enzyme structures over 400 million years.

作者信息

Lemke Oliver, Heineike Benjamin Murray, Viknander Sandra, Cohen Nir, Li Feiran, Steenwyk Jacob Lucas, Spranger Leonard, Agostini Federica, Lee Cory Thomas, Aulakh Simran Kaur, Berman Judith, Rokas Antonis, Nielsen Jens, Gossmann Toni Ingolf, Zelezniak Aleksej, Ralser Markus

机构信息

Department of Biochemistry, Charité-Universitätsmedizin Berlin, Berlin, Germany.

Exploratory Diagnostic Sciences, Berlin Institute of Health at Charité, Berlin, Germany.

出版信息

Nature. 2025 Jul 9. doi: 10.1038/s41586-025-09205-6.

Abstract

Advances in deep learning and AlphaFold2 have enabled the large-scale prediction of protein structures across species, opening avenues for studying protein function and evolution. Here we analyse 11,269 predicted and experimentally determined enzyme structures that catalyse 361 metabolic reactions across 225 pathways to investigate metabolic evolution over 400 million years in the Saccharomycotina subphylum. By linking sequence divergence in structurally conserved regions to a variety of metabolic properties of the enzymes, we reveal that metabolism shapes structural evolution across multiple scales, from species-wide metabolic specialization to network organization and the molecular properties of the enzymes. Although positively selected residues are distributed across various structural elements, enzyme evolution is constrained by reaction mechanisms, interactions with metal ions and inhibitors, metabolic flux variability and biosynthetic cost. Our findings uncover hierarchical patterns of structural evolution, in which structural context dictates amino acid substitution rates, with surface residues evolving most rapidly and small-molecule-binding sites evolving under selective constraints without cost optimization. By integrating structural biology with evolutionary genomics, we establish a model in which enzyme evolution is intrinsically governed by catalytic function and shaped by metabolic niche, network architecture, cost and molecular interactions.

摘要

深度学习和AlphaFold2的进展使得跨物种大规模预测蛋白质结构成为可能,为研究蛋白质功能和进化开辟了道路。在此,我们分析了11269个预测的和实验确定的酶结构,这些酶催化225条途径中的361种代谢反应,以研究子囊菌亚门4亿多年来的代谢进化。通过将结构保守区域的序列差异与酶的各种代谢特性联系起来,我们揭示了代谢在多个尺度上塑造结构进化,从全物种的代谢特化到网络组织以及酶的分子特性。尽管正选择残基分布在各种结构元件上,但酶的进化受到反应机制、与金属离子和抑制剂的相互作用、代谢通量变异性和生物合成成本的限制。我们的研究结果揭示了结构进化的层次模式,其中结构背景决定氨基酸取代率,表面残基进化最快,小分子结合位点在没有成本优化的选择性约束下进化。通过将结构生物学与进化基因组学相结合,我们建立了一个模型,其中酶的进化本质上由催化功能决定,并由代谢生态位、网络结构、成本和分子相互作用塑造。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验