Naderi Naeeme, Majidinia Sara, Moghaddas Mohammad Javad, Shooshtari Zahra, Hoseinzadeh Melika
Department of Operative Dentistry, School of Dentistry, Babol University of Medical Sciences, Mazandaran, Iran.
Department of Operative Dentistry, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran.
BMC Oral Health. 2025 Jul 9;25(1):1131. doi: 10.1186/s12903-025-06527-9.
This study investigated the appropriate surface treatment protocols for repairing various hybrid and non-hybrid ceramics.
Ceramic samples with a thickness of 2 mm were prepared from two resin-hybrid CAD/CAM blocks (Vita Enamic (hybrid-VE) and Lava Ultimate (hybrid-LU)) and two non-hybrid ceramics (VITABLOCS Mark II (non-hybrid-VM) and zirconia). The samples underwent 10,000 thermocycles. Their surfaces were then subjected to the following treatments before silanization and repair with resin composite using Tygon tubes with 1 mm diameter (n = 12): (1) no surface treatment, (2) grinding with silicon carbide, (3) sandblasting, and (4) etching with 9% hydrofluoric acid (HF). Then, ceramics were repaired using a universal adhesive agent (Clearfill Universal Bond; Kuraray, Tokyo, Japan) and composite resin. The microshear bond strength (µSBS) was measured and compared among the groups using two-way ANOVA and Tukey tests (α = 0.05).
The type of ceramic and the surface treatment significantly influenced the repair µSBS (P < 0.05). The highest µSBS values for hybrid-VE, hybrid-LU, and non-hybrid-VM were respectively associated with surface preparation using silicon carbide grinding, sandblasting, and 9% HF etching (P < 0.05). For zirconia ceramics, the µSBS value was highest when treated with sandblasting, though this difference was not statistically significant. When no surface treatment was applied, or the samples were sandblasted, hybrid-LU and non-hybrid-zirconia showed the highest µSBS values (P < 0.05). When the surface was etched with 9% HF or ground with silicon carbide paper, hybrid-VE, and non-hybrid-VM demonstrated the lowest repair µSBS values, respectively (P < 0.05).
The optimal surface treatments for repairing hybrid-VE, hybrid-LU, and non-hybrid-VM ceramics were silicon carbide grinding, sandblasting, and 9% HF etching, respectively. However, surface treatments did not significantly affect the performance of zirconia ceramics.
本研究调查了修复各种混合和非混合陶瓷的合适表面处理方案。
从两种树脂混合CAD/CAM块材(维他瓷晶(混合-VE)和义获嘉超凡(混合-LU))以及两种非混合陶瓷(维他全瓷二代(非混合-VM)和氧化锆)制备厚度为2毫米的陶瓷样本。样本经历10000次热循环。然后在硅烷化以及使用直径1毫米的泰根管(n = 12)用树脂复合材料修复之前,对其表面进行以下处理:(1)不进行表面处理,(2)用碳化硅研磨,(3)喷砂,以及(4)用9%氢氟酸(HF)蚀刻。然后,使用通用粘合剂(Clearfill通用粘结剂;可乐丽公司,东京,日本)和复合树脂修复陶瓷。使用双向方差分析和Tukey检验(α = 0.05)测量并比较各组之间的微剪切粘结强度(µSBS)。
陶瓷类型和表面处理对修复µSBS有显著影响(P < 0.05)。混合-VE、混合-LU和非混合-VM的最高µSBS值分别与使用碳化硅研磨、喷砂和9% HF蚀刻的表面处理相关(P < 0.05)。对于氧化锆陶瓷,喷砂处理时µSBS值最高,尽管这种差异无统计学意义。当不进行表面处理或对样本进行喷砂时,混合-LU和非混合氧化锆显示出最高的µSBS值(P < 0.05)。当表面用9% HF蚀刻或用碳化硅砂纸研磨时,混合-VE和非混合-VM分别表现出最低的修复µSBS值(P < 0.05)。
修复混合-VE、混合-LU和非混合-VM陶瓷的最佳表面处理分别是碳化硅研磨、喷砂和9% HF蚀刻。然而,表面处理对氧化锆陶瓷的性能没有显著影响。