Vyazmin Alexander, Behera Sangram, See Geok Lan, Moiseeva Victoria, Feurra Matteo
Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, HSE University, Russian Federation, Moscow, Russia.
Cajal Neuroscience Centre (CNC), Consejo Superior de Investigaciones Cientificas (CSIC), Madrid, Spain.
Front Hum Neurosci. 2025 Jun 25;19:1620526. doi: 10.3389/fnhum.2025.1620526. eCollection 2025.
Motor planning critically supports efficient hand grasping and object manipulation, involving the precise integration of sensory cues and anticipatory motor commands. Current methods often inadequately separate motor planning from movement execution, thus limiting our understanding of anticipatory motor control mechanisms.
This study aimed to establish and validate a structured methodological approach to investigate motor planning and execution during grasping tasks, using advanced motion tracking technology and standardized 3D-printed geometric objects.
Twenty-one participants performed a grasp-and-place task, requiring manipulation of abstract, non-semantic objects under varying rotation angles (0°, 90°, 180°, 270°). High-resolution kinematic data were captured using an infrared motion tracking system (Smart-DX, BTS Bioengineering, Italy). Novel computational analyses segmented each trial into distinct phases: total movement, movement initiation, reaching, maximal grasp aperture, and object placement. Wrist path length and execution time of each phase were statistically analyzed to assess the influence of object rotation on motor planning and execution.
Object rotation significantly impacted motor planning, as evidenced by prolonged initiation times and altered grasp-related temporal parameters. Specifically, movements involving rotation demonstrated increased movement initiation times, greater grasp apertures, extended placement durations, and longer wrist trajectories compared to non-rotated conditions. Interestingly, symmetrical rotations (180°) facilitated faster and more efficient movements compared to asymmetrical rotations (90°, 270°).
Our validated methodological framework enables precise isolation and assessment of motor planning processes during grasping movements. This paradigm provides robust tools for fundamental motor control research and has potential clinical applications for evaluating motor planning deficits in patients with neurological impairments.
运动规划对高效的手部抓握和物体操作至关重要,涉及感觉线索和预期运动指令的精确整合。当前的方法往往无法充分区分运动规划和运动执行,从而限制了我们对预期运动控制机制的理解。
本研究旨在建立并验证一种结构化的方法,利用先进的运动跟踪技术和标准化的3D打印几何物体,来研究抓握任务中的运动规划和执行。
21名参与者执行一项抓取并放置任务,要求在不同旋转角度(0°、90°、180°、270°)下操作抽象的、无语义的物体。使用红外运动跟踪系统(Smart-DX,BTS生物工程公司,意大利)捕获高分辨率运动学数据。新颖的计算分析将每个试验分为不同阶段:总运动、运动起始、伸手、最大抓握孔径和物体放置。对每个阶段的腕部路径长度和执行时间进行统计分析,以评估物体旋转对运动规划和执行的影响。
物体旋转显著影响运动规划,起始时间延长和与抓握相关的时间参数改变证明了这一点。具体而言,与未旋转的情况相比,涉及旋转的运动表现出更长的运动起始时间、更大的抓握孔径、更长的放置持续时间和更长的腕部轨迹。有趣的是,与非对称旋转(90°、270°)相比,对称旋转(180°)促进了更快、更高效的运动。
我们经过验证后的方法框架能够在抓握运动期间精确分离和评估运动规划过程。这种范式为基础运动控制研究提供了强大的工具,并且在评估神经功能障碍患者的运动规划缺陷方面具有潜在的临床应用价值。