Suppr超能文献

利用人工智能预测城市固体废物产生量:一种熵分析和SHAP的混合方法用于优化特征选择。

Predicting municipal solid waste generation using artificial intelligence: A hybrid approach of entropy analysis and SHAP for optimal feature selection.

作者信息

Nourani Vahid, Baghanam Aida H, Samadi Elham, Uzelaltinbulat Selin

机构信息

Center of Excellence in Hydroinformatics and Faculty of Civil Engineering, University of Tabriz, 29 Bahman Ave, Tabriz, Iran; World Peace University, Sht. Kemal Ali Omer St. No:22 Yenisehir, Nicosia/TRNC, Mersin 10, Turkey.

Center of Excellence in Hydroinformatics and Faculty of Civil Engineering, University of Tabriz, 29 Bahman Ave, Tabriz, Iran.

出版信息

Waste Manag. 2025 Aug;205:115012. doi: 10.1016/j.wasman.2025.115012. Epub 2025 Jul 9.

Abstract

The management of municipal solid waste (MSW) is one of the primary challenges in urban areas. To improve the accuracy of waste generation predictions, this study employed a hybrid approach that integrates Mutual Information (MI) with Shapley Additive Explanations (SHAP) for effective feature selection in Artificial Intelligence (AI) modeling. The Feed Forward Neural Network (FFNN) and Long Short-Term Memory (LSTM) models were utilized. The FFNN, a shallow learning model, is simpler and effective for capturing general patterns in data, while the LSTM, a deep learning model, is more suitable for autoregressive tasks such as predicting MSW generation. The proposed hybrid approach facilitated more precise identification of the key factors influencing MSW generation and improved the prediction models. The methodology was applied to meteorological and socio-economic data from three cities: Austin in the United States, Ballarat in Australia, and Boralesgamuwa in Sri Lanka, to examine the methodology under different conditions. The dominant factors identified included population, income, the Consumer Price Index (CPI), and lagged MSW variables with lags of 5, 10, and 20 days. The modeling performance was evaluated using the Determination Coefficient (DC) and Root Mean Square Error (RMSE). In Austin, the FFNN achieved a DC of 0.7226 during training and 0.6529 during testing. In Ballarat, the FFNN achieved training and testing DC values of 0.7037 and 0.6941, respectively. In Boralesgamuwa, due to severe data limitations, the model did not train well and showed poor performance in predictions (DC and RMSE values were significantly lower). The better performance of the model in Austin could be attributed to the longer temporal coverage of the data and greater stability in socio-economic patterns, while higher variability in socio-economic factors in Ballarat may have slightly reduced the model's accuracy. The results from Boralesgamuwa also highlight the importance of access to quality and consistent data for developing accurate models. These findings demonstrate that the MI-SHAP method can enhance prediction accuracy by identifying both linear and nonlinear relationships among variables and provide deeper insights into the dynamics governing waste generation. This methodology can aid in developing sustainable MSW management policies across various regions.

摘要

城市固体废物(MSW)管理是城市地区面临的主要挑战之一。为提高垃圾产生量预测的准确性,本研究采用了一种混合方法,将互信息(MI)与夏普利值加法解释(SHAP)相结合,用于人工智能(AI)建模中的有效特征选择。使用了前馈神经网络(FFNN)和长短期记忆(LSTM)模型。FFNN是一种浅层学习模型,对于捕捉数据中的一般模式更简单有效,而LSTM是一种深度学习模型,更适合诸如预测城市固体废物产生量这样的自回归任务。所提出的混合方法有助于更精确地识别影响城市固体废物产生的关键因素,并改进预测模型。该方法应用于来自美国奥斯汀、澳大利亚巴拉瑞特和斯里兰卡博拉勒斯加穆瓦三个城市的气象和社会经济数据,以检验不同条件下的该方法。识别出的主要因素包括人口、收入、消费价格指数(CPI)以及滞后5天、10天和20天的城市固体废物变量。使用决定系数(DC)和均方根误差(RMSE)评估建模性能。在奥斯汀,FFNN在训练期间的DC为0.7226,测试期间为0.6529。在巴拉瑞特,FFNN的训练和测试DC值分别为0.7037和0.6941。在博拉勒斯加穆瓦,由于严重的数据限制,模型训练不佳,预测性能较差(DC和RMSE值显著较低)。该模型在奥斯汀表现更好可归因于数据的时间覆盖范围更长以及社会经济模式更稳定,而巴拉瑞特社会经济因素的更高变异性可能略微降低了模型的准确性。博拉勒斯加穆瓦的结果也凸显了获取高质量和一致数据对于开发准确模型的重要性。这些发现表明,MI - SHAP方法可以通过识别变量之间的线性和非线性关系来提高预测准确性,并更深入地洞察控制垃圾产生的动态过程。该方法有助于在不同地区制定可持续的城市固体废物管理政策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验