Suppr超能文献

ST-CFI:具有卷积特征交互的Swin Transformer用于识别植物病害。

ST-CFI: Swin Transformer with convolutional feature interactions for identifying plant diseases.

作者信息

Yu Sheng, Xie Li, Dai Liang

机构信息

School of Information Engineering, Shaoguan University, Daoxue road, 512000, Shaoguan, Guangdong, China.

School of Big Data and Computer Science, GuiZhou Normal University, Huaxi, 550025, Guiyang, Guizhou, China.

出版信息

Sci Rep. 2025 Jul 11;15(1):25000. doi: 10.1038/s41598-025-08673-0.

Abstract

The increasing global population, coupled with the diminishing availability of arable land, has rendered the challenge of ensuring food security more pronounced. The prompt and precise identification of plant diseases is essential for reducing crop losses and improving agricultural yield. This paper introduces the Swin Transformer with Convolutional Feature Interactions (ST-CFI), a state-of-the-art deep learning framework designed for detecting plant diseases through the analysis of leaf images. The ST-CFI model effectively integrates the strengths of the Convolutional Neural Networks (CNNs) and Swin Transformers, enabling the extraction of both local and global features from plant images. This is achieved through the implementation of an inception architecture and cross-channel feature learning, which collectively enhance the information necessary for detailed feature extraction. Comprehensive experiments were conducted using five distinct datasets: PlantVillage, Plant Pathology 2021 competition dataset, PlantDoc, AI2018, and iBean. The ST-CFI model exhibited exceptional performance, achieving an accuracy of 99.96% on the PlantVillage dataset, 99.22% on iBean, 86.89% on AI2018, and 77.54% on PlantDoc. These results underscore the model's robustness and its capacity to generalize across various datasets and real-world conditions. The high accuracy and F1 scores, in conjunction with low loss values, further validate the model's efficacy in learning discriminative features. The ST-CFI model signifies a substantial advancement in the early and accurate detection of plant diseases, serving as a valuable instrument for precision agriculture. Its capacity to integrate CNNs and Transformers within a unified framework enhances the model's feature extraction capabilities, resulting in improved accuracy in the identification of plant diseases. This study concludes that the ST-CFI model effectively addresses plant disease detection challenges, with significant implications for agricultural sustainability and productivity.

摘要

全球人口不断增长,加上可耕地面积日益减少,使得确保粮食安全的挑战更加严峻。迅速而准确地识别植物病害对于减少作物损失和提高农业产量至关重要。本文介绍了具有卷积特征交互的Swin Transformer(ST-CFI),这是一种先进的深度学习框架,旨在通过分析叶片图像来检测植物病害。ST-CFI模型有效地整合了卷积神经网络(CNN)和Swin Transformer的优势,能够从植物图像中提取局部和全局特征。这是通过实施 inception 架构和跨通道特征学习来实现的,它们共同增强了详细特征提取所需的信息。使用五个不同的数据集进行了全面的实验:PlantVillage、2021年植物病理学竞赛数据集、PlantDoc、AI2018和iBean。ST-CFI模型表现出卓越的性能,在PlantVillage数据集上的准确率达到99.96%,在iBean上为99.22%,在AI2018上为86.89%,在PlantDoc上为77.54%。这些结果凸显了该模型的稳健性及其在各种数据集和现实世界条件下的泛化能力。高准确率和F1分数,以及低损失值,进一步验证了该模型在学习判别性特征方面的有效性。ST-CFI模型标志着在植物病害早期准确检测方面取得了重大进展,是精准农业的宝贵工具。它在统一框架内整合CNN和Transformer的能力增强了模型的特征提取能力,从而提高了植物病害识别的准确率。本研究得出结论,ST-CFI模型有效地应对了植物病害检测挑战,对农业可持续性和生产力具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa64/12246160/b947d3b9cc3d/41598_2025_8673_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验