Chen Changchang, Chen Chen, Zheng Xiaoguang, Wang Weizhong, Shen Jian, Jin Gulei, Lyu Jianxin, Lin Lijun
Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China.
Appl Microbiol Biotechnol. 2025 Jul 10;109(1):166. doi: 10.1007/s00253-025-13548-5.
Gastric cancer (GC) is a malignant cancer of the digestive tract with high morbidity and mortality. Previous studies have shown that current diagnostic methods largely rely on invasive procedures. Moreover, there are no highly sensitive and accurate biomarkers available for early GC diagnosis. Recent studies using 16S rRNA technology show that gut microbiota can differentiate between diseased and healthy individuals. However, fewer studies emphasize the gut microbiome's value in GC diagnosis. In this study, we collected 455 fecal samples, including 100 from healthy individuals (healthy controls [HCs]), 153 from GC patients, 43 from patients with non-neoplastic diseases of the stomach, and 159 from verification individuals. Our analysis revealed a significantly increased microbial richness in the GC group (Chao1 index, P < 0.05) and distinct compositional differences (principal coordinates analysis). Linear discriminant analysis effect size analysis identified 19 HC-enriched genera (e.g., Bacteroides) and 31 GC-enriched genera (e.g., Streptococcus). The random forest model selected 20 key diagnostic genera, achieving an area under the receiver operating characteristic curve (AUC) of 0.81. By integrating 10 tumor biomarkers, the combined diagnostic model improved the AUC to 0.86 (validation set: 0.84). Tumor biomarker positivity (60.78%) did not directly correlate with microbiota, but the microbiota-biomarker model improved non-invasive diagnostic accuracy, providing a new approach for early GC screening. KEY POINTS: • Changchang Chen and Chen Chen contributed equally to this work • Gut microbiota changes significantly in gastric cancer • Microbiome shows promise as non-invasive diagnostic markers • The combined microbiota-tumor marker model improves diagnosis.
胃癌(GC)是一种发病率和死亡率都很高的消化道恶性肿瘤。以往的研究表明,目前的诊断方法很大程度上依赖于侵入性操作。此外,目前尚无用于早期胃癌诊断的高灵敏度和高准确性的生物标志物。最近使用16S rRNA技术的研究表明,肠道微生物群可以区分患病个体和健康个体。然而,较少有研究强调肠道微生物群在胃癌诊断中的价值。在本研究中,我们收集了455份粪便样本,其中包括100份来自健康个体(健康对照[HCs]),153份来自胃癌患者,43份来自胃部非肿瘤性疾病患者,以及159份来自验证个体。我们的分析显示,胃癌组的微生物丰富度显著增加(Chao1指数,P<0.05),且存在明显的组成差异(主坐标分析)。线性判别分析效应大小分析确定了19个在HC中富集的属(如拟杆菌属)和31个在胃癌中富集的属(如链球菌属)。随机森林模型选择了20个关键诊断属,受试者操作特征曲线下面积(AUC)达到0.81。通过整合10种肿瘤生物标志物,联合诊断模型将AUC提高到0.86(验证集:0.84)。肿瘤生物标志物阳性率(60.78%)与微生物群没有直接相关性,但微生物群-生物标志物模型提高了非侵入性诊断的准确性,为早期胃癌筛查提供了一种新方法。要点:•陈畅畅和陈晨对本工作贡献相同•胃癌中肠道微生物群发生显著变化•微生物群有望成为非侵入性诊断标志物•微生物群-肿瘤标志物联合模型提高了诊断水平
Appl Microbiol Biotechnol. 2025-7-10
Sichuan Da Xue Xue Bao Yi Xue Ban. 2025-3-20
Cochrane Database Syst Rev. 2016-5-1
Trends Mol Med. 2023-10
Nat Rev Clin Oncol. 2023-5
Eur J Cancer Prev. 2023-9-1
Appl Microbiol Biotechnol. 2022-10
Nutrients. 2022-4-23
J Surg Oncol. 2022-6
JAMA Netw Open. 2021-7-1
Appl Microbiol Biotechnol. 2021-6