Jia Shengzhe, Yang Bingbing, Zhang Jiayin, Zhang Yongsheng, Wei Jiahao, Du Jing, Shan Mingda, Tang Jiaxuan, Tang Weiwei, Gong Junbo
State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China.
Small. 2025 Sep;21(36):e2505073. doi: 10.1002/smll.202505073. Epub 2025 Jul 10.
Manufacturing the circularly polarized room-temperature phosphorescence (CP-RTP) materials with both a high dissymmetry factor (g) and ultralong lifetime is significant, but it is greatly challenging owing to the difficulty of satisfying the stable triplet exciton and matched chirality simultaneously. In this work, the RTP material is synthesized by doping the chromophores into the poly(vinyl alcohol) (PVA) matrix. The rigidity surrounding and the compact hydrogen bond interactions contribute to the long-lived phosphorescent emission. On this basis, the RTP assembly is imported into the cellulose-based chiral liquid crystal matrix to produce the CP effects. By optimizing the photonic bandgap structure, this nanofilm integrates a large g of -0.2881, blue-green afterglow over 50 s, and an ultralong room-temperature lifetime of 4.129 s. Next, this work utilizes the selective optical reflection to switch the handedness direction of CPL, which resolves the inherent limitation of a single chiral luminescent direction, and the inverted g reaches 0.2379. Then, by introducing the organic dyes, multi-color chiral phosphorescence is realized under the efficient energy transfer between the host film and guest dyes. Finally, the CP-RTP nanofilm, characterized by multimodal and convertible optics and green manufacturing, is applied in the optical anti-counterfeiting areas.
制造具有高不对称因子(g)和超长寿命的圆偏振室温磷光(CP-RTP)材料具有重要意义,但由于难以同时满足稳定的三重态激子和匹配的手性,这极具挑战性。在这项工作中,通过将发色团掺杂到聚乙烯醇(PVA)基质中来合成RTP材料。周围的刚性和紧密的氢键相互作用有助于产生长寿命的磷光发射。在此基础上,将RTP组件引入基于纤维素的手性液晶基质中以产生CP效应。通过优化光子带隙结构,这种纳米薄膜集成了高达-0.2881的大g值、超过50秒的蓝绿色余辉以及4.129秒的超长室温寿命。接下来,这项工作利用选择性光反射来切换CPL的旋向,解决了单一手性发光方向的固有局限性,反转后的g达到0.2379。然后,通过引入有机染料,在主体薄膜和客体染料之间的高效能量转移下实现了多色手性磷光。最后,以多模态和可转换光学以及绿色制造为特征的CP-RTP纳米薄膜被应用于光学防伪领域。