Liu Congcong, Yao Kaitong, Yang Yang, Yang Hai, Xu Shitan, Tang Yi, Yao Yu, Wu Zhijun, He Shengnan, Pan Hongge, Rui Xianhong, Yu Yan
Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China.
Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China.
Adv Mater. 2025 Jul 10:e2507735. doi: 10.1002/adma.202507735.
Sodium metal batteries (SMBs) represent a promising next-generation energy storage technology due to their low cost and high energy density. However, SMBs face significant challenges, including interfacial instability and the growth of sodium dendrites on the metal anode, particularly at low temperatures (LTs). Poor ion desolvation at LTs further exacerbates these issues, severely compromising battery performance. To address these problems, a heterogeneous artificial solid electrolyte interphase (SEI) composed of NaVO and metallic In (NVO-In@Na) is designed for LT SMBs. The sodiophilic NaVO promotes sodium ion adsorption, while the NaIn phase formed during the initial plating enhances ion transport kinetics, resulting in uniform Na deposition behavior. Theory calculations indicate that the NaVO/NaIn interface accelerates charge transfer processes and desolvation. The engineered NVO-In@Na anode demonstrates exceptional stability: symmetric cells operate for over 2000 h at 0.5 mA cm/1 mAh cm under ambient conditions and exceed 1100 h at 0.1 mA cm/0.1 mAh cm at -40 °C. Full cells paired with NaV(PO) (NVP) cathode retain 97% capacity after 1150 cycles at 0.5 C and -40 °C. This work highlights the potential of rational SEI design to overcome critical limitations of SMBs, advancing high-performance energy storage under extreme conditions.
钠金属电池(SMBs)因其低成本和高能量密度而成为一种很有前景的下一代储能技术。然而,SMBs面临着重大挑战,包括界面不稳定性以及金属阳极上钠枝晶的生长,尤其是在低温(LTs)条件下。低温下离子去溶剂化不良进一步加剧了这些问题,严重影响电池性能。为了解决这些问题,一种由NaVO和金属铟(NVO-In@Na)组成的异质人工固体电解质界面(SEI)被设计用于低温SMBs。亲钠的NaVO促进钠离子吸附,而初始电镀过程中形成的NaIn相增强了离子传输动力学,从而导致均匀的钠沉积行为。理论计算表明,NaVO/NaIn界面加速了电荷转移过程和去溶剂化。经过工程设计的NVO-In@Na阳极表现出卓越的稳定性:对称电池在环境条件下以0.5 mA cm/1 mAh cm运行超过2000小时,在-40°C下以0.1 mA cm/0.1 mAh cm运行超过1100小时。与NaV(PO)(NVP)阴极配对的全电池在0.5 C和-40°C下经过1150次循环后仍保留97%的容量。这项工作突出了合理设计SEI以克服SMBs关键限制的潜力,推动了极端条件下的高性能储能。