Ma Shijia, Chen Xingtong, Li Mengqi, Li Xinrui, Xie Jiachen, Guo Qian, Wang Xuan, Wu Longjia, Chen Song
State Key Laboratory of Bioinspired Interfacial Materials Science, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China.
TCL Corporate Research, Shenzhen 518067, Guangdong, China.
J Phys Chem Lett. 2025 Jul 24;16(29):7293-7299. doi: 10.1021/acs.jpclett.5c01347. Epub 2025 Jul 11.
The advancement of quantum dot light-emitting diodes (QLEDs) is impeded by an anomalous aging phenomenon, the mechanistic interplay of which with device optical architectures─a fundamental issue driven by the industrial standard─has been consistently overlooked. Here, we report that a single-mode top-emitting QLED exhibits mitigated positive aging compared to its bottom-emitting counterpart, with the structural disparity primarily lying in the thickness of the top electrode. The discrepancy in positive aging correlates with divergent shifts in ZnO's Fermi level during device operation and shelf storage, which modulates the hole leakage current and above-threshold electron injection current to improve charge confinement and electroluminescence quantum efficiency. Further investigations uncovered that thickness-dependent Ag cathode diffusion leads to the extended distribution of Ag nanoclusters within the ZnO electron-transporting layer, facilitating chemical n-doping that elevates the Fermi level. These findings unveil a previously unrecognized pathway of positive aging and establish critical design principles for enhancing the stability and reliability of QLED displays.
量子点发光二极管(QLED)的发展受到一种异常老化现象的阻碍,而这种现象与器件光学结构之间的机制相互作用——这是一个由行业标准驱动的基本问题——一直被忽视。在此,我们报告,与底部发射的QLED相比,单模顶部发射的QLED呈现出减轻的正向老化,其结构差异主要在于顶部电极的厚度。正向老化的差异与器件运行和储存期间ZnO费米能级的不同变化相关,这调节了空穴泄漏电流和阈值以上的电子注入电流,从而改善了电荷限制和电致发光量子效率。进一步的研究发现,与厚度相关的Ag阴极扩散导致Ag纳米团簇在ZnO电子传输层内的分布扩展,促进了化学n型掺杂,从而提高了费米能级。这些发现揭示了一种此前未被认识的正向老化途径,并为提高QLED显示器的稳定性和可靠性确立了关键的设计原则。