Jiang Yuhang, Li Le, Zhang Jin, Li Weihang, Zhao Xiaotong, Xie Yi, Guo Mengyang, Zhong Miao
College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China.
Collaborative Innovation Centre of Advanced Microstructures, National Laboratory of Solid State Microstructures, Frontiers Science Center for Critical Earth Material Cycling, College of Engineering and Applied Science, Nanjing, 210023, China.
Chem Asian J. 2025 Jul 11:e00685. doi: 10.1002/asia.202500685.
Electrochemical CO reduction (COR) offers a promising route for converting waste CO into valuable short-chain (C-C) hydrocarbon chemicals using renewable electricity. Substantial progress has been made in elucidating COR reaction mechanisms and in designing high-performance electrocatalysts and electrode structures. Building on these developments, recent efforts have increasingly focused on system-level optimization to fully harness the potential of electrocatalysts for achieving new benchmark efficiencies under practical conditions. Among different COR device configurations, zero-gap membrane electrode assembly (MEA) electrolyzers-typically consisting of catalyst-coated gas diffusion electrodes (GDEs) pressed tightly against an ion-exchange membrane-have shown promise for achieving high COR current densities at low cell voltages. However, critical challenges remain in the MEA-based COR systems that must be addressed before large-scale deployment. This review discusses recent advances in MEA-based COR, providing cross-scale analyses that connect microscale reaction kinetics, mesoscale mass transport, and device-level integration. It identifies key performance indicators that capture the complex interplay between catalysts, electrode structures, and the overall reaction system, serving as a foundation for the rational design of components and MEA systems toward efficient and scalable operation. With these insights, this review discusses opportunities and challenges for advancing MEA devices toward sustainable and practical CO-to-chemical conversion.
电化学一氧化碳还原(COR)为利用可再生电力将废气中的一氧化碳转化为有价值的短链(C-C)烃类化学品提供了一条很有前景的途径。在阐明COR反应机理以及设计高性能电催化剂和电极结构方面已经取得了重大进展。基于这些进展,最近的努力越来越集中在系统层面的优化上,以充分发挥电催化剂的潜力,在实际条件下实现新的基准效率。在不同的COR装置配置中,零间隙膜电极组件(MEA)电解槽——通常由紧密压靠在离子交换膜上的催化剂涂覆气体扩散电极(GDE)组成——已显示出在低电池电压下实现高COR电流密度的潜力。然而,基于MEA的COR系统在大规模部署之前仍面临必须解决的关键挑战。本综述讨论了基于MEA的COR的最新进展,提供了跨尺度分析,将微观尺度的反应动力学、介观尺度的质量传输和器件层面的集成联系起来。它确定了关键性能指标,这些指标捕捉了催化剂、电极结构和整个反应系统之间的复杂相互作用,为合理设计组件和MEA系统以实现高效和可扩展运行奠定了基础。基于这些见解,本综述讨论了将MEA装置推进到可持续和实际的CO到化学品转化的机遇和挑战。