Arguello Alfonso, Sadhnani Gaurav, Leung Jerry, Moawad Fatma, Cullis Pieter R, Hedtrich Sarah, Brambilla Davide
Faculty of Pharmacy, University of Montreal, Montreal H3T 1J4, Canada.
Berlin Institute of Health @ Charité Universitätsmedizin, Berlin 10117, Germany.
Mol Pharm. 2025 Aug 4;22(8):4778-4793. doi: 10.1021/acs.molpharmaceut.5c00403. Epub 2025 Jul 11.
Efficient transdermal delivery of the genetic material remains a key challenge for noninvasive gene therapy due to skin's barrier properties. While lipid nanoparticles (LNPs) effectively encapsulate and protect mRNA, they cannot freely penetrate the skin. Hydrogel-forming microneedle (HFMN) patches, which swell upon skin insertion, offer a promising strategy to overcome this limitation. However, integrating fragile LNPs into HFMNs without compromising the patch integrity or nanoparticle function remains an unresolved issue. Here, we present a method for the spatially controlled, post-manufacturing loading of mRNA-encapsulated LNPs into HFMN patches. Key parameters─including the HFMN patch height (250, 500, and 800 μm), insertion depth, duration (15-60 s), and repetition (up to six times)─were systematically evaluated in an agarose gel containing a dye model to optimize loading while preserving the microneedle and overall patch integrity. Under optimized conditions, 500 μm HFMN patches loaded with either MC3-DOPE-DiI-LNPs or MC3-DOPE-eGFP-LNPs, at 400 μm insertion depth and 15 s hold time, achieved up to 140 μg of payload after six insertions. Ex vivo experiments using fluorescently labeled empty LNPs confirmed the nanoparticle release. Despite modest recovery, functional studies demonstrated the successful delivery and cellular uptake of functional LNPs into human skin, as confirmed by IVIS imaging. This approach offers a robust and minimally invasive method to load and deliver the genetic material through the skin, supporting the advancement of the microneedle-based transdermal gene therapy.
由于皮肤的屏障特性,遗传物质的高效透皮递送仍然是无创基因治疗的一个关键挑战。虽然脂质纳米颗粒(LNPs)能有效封装和保护mRNA,但它们无法自由穿透皮肤。水凝胶形成微针(HFMN)贴片在插入皮肤后会膨胀,为克服这一限制提供了一种有前景的策略。然而,在不损害贴片完整性或纳米颗粒功能的情况下,将脆弱的LNPs整合到HFMNs中仍是一个未解决的问题。在此,我们提出一种方法,用于在制造后将封装mRNA的LNPs空间控制地加载到HFMN贴片中。在含有染料模型的琼脂糖凝胶中系统评估了关键参数,包括HFMN贴片高度(250、500和800μm)、插入深度、持续时间(15 - 60秒)和重复次数(最多六次),以优化加载过程,同时保持微针和整体贴片的完整性。在优化条件下,500μm的HFMN贴片加载MC3 - DOPE - DiI - LNPs或MC3 - DOPE - eGFP - LNPs,在400μm插入深度和15秒保持时间下,六次插入后可实现高达140μg的有效载荷。使用荧光标记的空LNPs进行的体外实验证实了纳米颗粒的释放。尽管回收率不高,但功能研究表明功能性LNPs成功递送至人皮肤并被细胞摄取,IVIS成像证实了这一点。这种方法提供了一种强大且微创的方法,通过皮肤加载和递送遗传物质,支持基于微针的透皮基因治疗的进展。