Lyu Ning, Edirisooriya Anjalie, Fusco Zelio, Zhao Shenyou, Beck Fiona J, David Christin
Institute of Solid State Theory and Optics, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany.
School of Engineering, Australian National University, Acton ACT 2601, Australia.
ACS Nano. 2025 Jul 22;19(28):25821-25829. doi: 10.1021/acsnano.5c04020. Epub 2025 Jul 11.
Photocatalysis offers a sustainable approach to converting solar energy into chemical energy, enabling the production of renewable fuels and chemicals with net-zero emissions, a crucial step toward a renewable energy-based economy. Recent advancements in nanophotonics, particularly in plasmonic hybridized nanostructures, have enabled tunable localized surface plasmon resonances, offering solutions for selective, resonance-driven chemical applications via two nonthermal mechanisms: near-field enhancement, which amplifies the localized electromagnetic field, and hot electron energy transfer, which injects energetic electrons into reactants. We designed a series of self-assembled Au nanoparticle cavities to precisely control plasmonic resonance strength via Fabry-Pérot (F-P) resonances by tuning the TiO cavity thickness. The strong coupling between plasmonic and F-P modes can be strategically exploited to either enhance or suppress a model reaction, the photodegradation of methylene blue. By tuning the F-P node or peak to achieve spatial and spectral overlap with the plasmonic resonance, we can facilitate and enhance the reaction. Specifically, this approach enhances the product yield by a factor of 102, from 0.07 to over 7.18, as determined by the integration of the vibrational peak of the product at 480 cm in the Raman spectrum. These findings demonstrate that plasmonic hybridized nanostructures enable control over reactions to modulate the desired product yield. In this work, we demonstrate a strategy for optically manipulating reaction rates to either enhance target products or suppress it. This approach advances the selective control of photocatalysis, offering opportunities to enhance conversion processes, and has potential applications in renewable fuel production.
光催化提供了一种将太阳能转化为化学能的可持续方法,能够生产净零排放的可再生燃料和化学品,这是迈向基于可再生能源的经济的关键一步。纳米光子学的最新进展,特别是在等离子体杂交纳米结构方面,已经实现了可调谐的局域表面等离子体共振,通过两种非热机制为选择性的、共振驱动的化学应用提供了解决方案:近场增强,它放大了局域电磁场;热电子能量转移,它将高能电子注入反应物中。我们设计了一系列自组装的金纳米颗粒腔,通过调整TiO腔厚度,利用法布里-珀罗(F-P)共振精确控制等离子体共振强度。等离子体和F-P模式之间的强耦合可以被策略性地利用来增强或抑制模型反应——亚甲基蓝的光降解。通过调整F-P节点或峰值以实现与等离子体共振的空间和光谱重叠,我们可以促进和增强反应。具体而言,根据拉曼光谱中产物在480 cm处振动峰的积分确定,这种方法将产物产率提高了102倍,从0.07提高到超过7.18。这些发现表明,等离子体杂交纳米结构能够控制反应以调节所需的产物产率。在这项工作中,我们展示了一种光学操纵反应速率以增强或抑制目标产物的策略。这种方法推动了光催化的选择性控制,为增强转化过程提供了机会,并且在可再生燃料生产中具有潜在应用。