Hu Haiyang, Weber Thomas, Bienek Oliver, Wester Alwin, Hüttenhofer Ludwig, Sharp Ian D, Maier Stefan A, Tittl Andreas, Cortés Emiliano
Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Königinstraße 10, 80539 München, Germany.
Walter Schottky Institute and Physics Department, Technical University Munich, Am Coulombwall 4, 85748 Garching, Germany.
ACS Nano. 2022 Aug 23;16(8):13057-13068. doi: 10.1021/acsnano.2c05680. Epub 2022 Aug 11.
Photocatalytic platforms based on ultrathin reactive materials facilitate carrier transport and extraction but are typically restricted to a narrow set of materials and spectral operating ranges due to limited absorption and poor energy-tuning possibilities. Metasurfaces, a class of 2D artificial materials based on the electromagnetic design of nanophotonic resonators, allow optical absorption engineering for a wide range of materials. Moreover, tailored resonances in nanostructured materials enable strong absorption enhancement and thus carrier multiplication. Here, we develop an ultrathin catalytic metasurface platform that leverages the combination of loss-engineered substoichiometric titanium oxide (TiO) and the emerging physical concept of optical bound states in the continuum (BICs) to boost photocatalytic activity and provide broad spectral tunability. We demonstrate that our platform reaches the condition of critical light coupling in a TiO BIC metasurface, thus providing a general framework for maximizing light-matter interactions in diverse photocatalytic materials. This approach can avoid the long-standing drawbacks of many naturally occurring semiconductor-based ultrathin films applied in photocatalysis, such as poor spectral tunability and limited absorption manipulation. Our results are broadly applicable to fields beyond photocatalysis, including photovoltaics and photodetectors.
基于超薄活性材料的光催化平台有助于载流子传输和提取,但由于吸收有限且能量调谐可能性差,通常仅限于狭窄的材料集和光谱工作范围。超表面是一类基于纳米光子谐振器电磁设计的二维人工材料,可对多种材料进行光吸收工程。此外,纳米结构材料中的定制共振能够实现强烈的吸收增强,从而实现载流子倍增。在此,我们开发了一种超薄催化超表面平台,该平台利用了经过损耗工程处理的亚化学计量氧化钛(TiO)与新兴的连续统光学束缚态(BIC)物理概念相结合的方式,以提高光催化活性并提供广泛的光谱可调性。我们证明,我们的平台在TiO BIC超表面中达到了临界光耦合条件,从而为在各种光催化材料中最大化光与物质的相互作用提供了一个通用框架。这种方法可以避免许多应用于光催化的天然半导体基超薄薄膜长期存在的缺点,如光谱可调性差和吸收操纵有限。我们的结果广泛适用于光催化以外的领域,包括光伏和光电探测器。