Rodrigues Pereira Osvaldo, Serna Julian D C, Caldeira da Silva Camille C, Camara Henrique, Kodani Sean D, Festuccia William T, Tseng Yu-Hua, Kowaltowski Alicia J
Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
Departamento de Fisiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.
Am J Physiol Cell Physiol. 2025 Aug 1;329(2):C574-C584. doi: 10.1152/ajpcell.00070.2025. Epub 2025 Jul 11.
Brown adipose tissue (BAT) plays a central role in mammalian nonshivering thermogenesis, dissipating mitochondrial membrane potentials through the activity of uncoupling protein UCP1 to release heat. Inner membranes of mitochondria are known to be permeable to potassium ions (K), which enter the matrix either through ATP-sensitive channels (MitoK) or leakage across the bilayer driven by inner membrane potentials. Mitochondrial K influx is associated with increased osmotic pressure, promoting water influx and increasing matrix volume. Since BAT mitochondria have lower inner membrane potentials due to uncoupling protein 1 (UCP1) activity, we hypothesized this could involve compensatory changes in MitoK activity and thus tested MitoK involvement in brown adipocyte activities under basal and stimulated conditions. We find that cold exposure and adrenergic stimulation in mice modulate BAT MitoK levels, the channel portion of MitoK. Genetic ablation of the gene that codes for the pore-forming subunit of MitoK in human preadipocytes decreased cellular respiration and proliferation, compromising differentiation into mature adipocytes. In mouse cell lines, the absence of the protein limited cellular oxygen consumption in the precursor stage but not in mature adipocytes. Interestingly, inhibition of MitoK in mature adipocytes increased adrenergic-stimulated oxygen consumption, indicating that shutdown of this pathway is important for full BAT thermogenesis. Similarly, MitoK inhibition increased oxygen consumption in BAT mitochondria isolated from mice treated with the β3 adrenergic receptor agonist CL316,243. Overall, our results suggest that the activity of MitoK regulates differentiation and metabolism of brown adipocytes, impacting thermogenesis. Brown fat cells are important to maintain a healthy body weight by promoting mitochondrial uncoupling. Here, we demonstrate that mitochondrial ATP-sensitive potassium channels (MitoK) have important roles both in the differentiation of brown fat cells and in the activation of energy-dissipating uncoupling in this tissue.
棕色脂肪组织(BAT)在哺乳动物的非颤抖性产热中起核心作用,通过解偶联蛋白UCP1的活性消散线粒体膜电位以释放热量。已知线粒体的内膜对钾离子(K)具有通透性,钾离子通过ATP敏感性通道(MitoK)进入线粒体基质,或者由内膜电位驱动穿过双层膜渗漏进入。线粒体钾离子内流与渗透压升高相关,促进水的内流并增加基质体积。由于棕色脂肪组织线粒体因解偶联蛋白1(UCP1)的活性而具有较低的内膜电位,我们推测这可能涉及MitoK活性的代偿性变化,因此测试了MitoK在基础和刺激条件下对棕色脂肪细胞活性的影响。我们发现,小鼠暴露于寒冷环境和接受肾上腺素能刺激会调节棕色脂肪组织的MitoK水平,即MitoK的通道部分。在人前脂肪细胞中,编码MitoK孔形成亚基的基因的基因消融会降低细胞呼吸和增殖,损害其向成熟脂肪细胞的分化。在小鼠细胞系中,该蛋白的缺失在前体阶段限制了细胞耗氧量,但在成熟脂肪细胞中则没有。有趣的是,抑制成熟脂肪细胞中的MitoK会增加肾上腺素能刺激的耗氧量,表明该途径的关闭对于棕色脂肪组织的完全产热很重要。同样,MitoK抑制增加了从用β3肾上腺素能受体激动剂CL316,243处理的小鼠中分离出的棕色脂肪组织线粒体的耗氧量。总体而言,我们的结果表明,MitoK的活性调节棕色脂肪细胞的分化和代谢,影响产热。棕色脂肪细胞对于通过促进线粒体解偶联来维持健康体重很重要。在这里,我们证明线粒体ATP敏感性钾通道(MitoK)在棕色脂肪细胞的分化以及该组织中能量消散解偶联的激活中均具有重要作用。