Franchi Marco, Masola Valentina, Onisto Maurizio, Franchi Leonardo, Mangani Sylvia, Zolota Vasiliki, Piperigkou Zoi, Karamanos Nikos K
Department for Life Quality Study, University of Bologna, 47921 Rimini, Italy.
Department of Biomedical Sciences, University of Padova, 35129 Padova, Italy.
Cells. 2025 Jul 7;14(13):1037. doi: 10.3390/cells14131037.
Breast cancer invasion and subsequent metastasis to distant tissues occur when cancer cells lose cell-cell contact, develop a migrating phenotype, and invade the basement membrane (BM) and the extracellular matrix (ECM) to penetrate blood and lymphatic vessels. The identification of the mechanisms which induce the development from a ductal carcinoma in situ (DCIS) to a minimally invasive breast carcinoma (MIBC) is an emerging area of research in understanding tumor invasion and metastatic potential. To investigate the progression from DCIS to MIBC, we analyzed peritumoral collagen architecture using correlative scanning electron microscopy (SEM) on histological sections from human biopsies. In DCIS, the peritumoral collagen organizes into concentric lamellae ('circular fibers') parallel to the ducts. Within each lamella, type I collagen fibrils align in parallel, while neighboring lamellae show orthogonal fiber orientation. The concentric lamellar arrangement of collagen may physically constrain cancer cell migration, explaining the lack of visible tumor cell invasion into the peritumoral ECM in DCIS. A lamellar dissociation or the development of small inter fiber gaps allowed isolated breast cancer cell invasion and exosomes infiltration in the DCIS microenvironment. The radially arranged fibers observed in the peri-tumoral microenvironment of MIBC biopsies develop from a bending of the circular fibers of DCIS and drive a collective cancer cell invasion associated with an intense immune cell infiltrate. Type I collagen fibrils represent the peri-tumoral nano-environment which can play a mechanical role in regulating the development from DCIS to MIBC. Collectively, it is plausible to suggest that the ECM effectors implicated in breast cancer progression released by the interplay between cancer, stromal, and/or immune cells, and degrading inter fiber/fibril hydrophilic ECM components of the peritumoral ECM, may serve as key players in promoting the dissociation of the concentric collagen lamellae.
当癌细胞失去细胞间接触、形成迁移表型并侵入基底膜(BM)和细胞外基质(ECM)以穿透血管和淋巴管时,乳腺癌就会发生侵袭并随后转移至远处组织。识别诱导导管原位癌(DCIS)发展为微浸润性乳腺癌(MIBC)的机制是理解肿瘤侵袭和转移潜能的一个新兴研究领域。为了研究从DCIS到MIBC的进展,我们使用相关扫描电子显微镜(SEM)对人活检组织切片的瘤周胶原结构进行了分析。在DCIS中,瘤周胶原组织成与导管平行的同心薄片(“环状纤维”)。在每个薄片内,I型胶原纤维平行排列,而相邻薄片显示正交的纤维方向。胶原的同心层状排列可能在物理上限制癌细胞迁移,这解释了在DCIS中未见肿瘤细胞侵入瘤周ECM的现象。薄片解离或小纤维间间隙的形成允许孤立的乳腺癌细胞侵袭和外泌体浸润到DCIS微环境中。在MIBC活检组织的瘤周微环境中观察到的放射状排列的纤维是由DCIS的环状纤维弯曲形成的,并驱动与强烈免疫细胞浸润相关的癌细胞集体侵袭。I型胶原纤维代表瘤周纳米环境,其在调节从DCIS到MIBC的发展过程中可能发挥机械作用。总的来说,有理由认为,由癌症、基质和/或免疫细胞之间的相互作用释放的、参与乳腺癌进展的ECM效应物,以及降解瘤周ECM的纤维间/原纤维亲水ECM成分,可能是促进同心胶原薄片解离的关键因素。