Suppr超能文献

生态进化引导的病理分析检测生物标志物以预测原位导管癌分期升级。

Eco-Evolutionary Guided Pathomic Analysis Detects Biomarkers to Predict Ductal Carcinoma In Situ Upstaging.

作者信息

Xiao Yujie, Elmasry Manal, Bai Ji Dong K, Chen Andrew, Chen Yuzhu, Jackson Brooke, Johnson Joseph O, Prasanna Prateek, Chen Chao, Damaghi Mehdi

机构信息

Department of Applied Mathematics and Statistics, Stony Brook University, New York, New York.

Department of Pathology, Stony Brook Medicine, Stony Brook University, New York, New York.

出版信息

Cancer Res. 2025 Jun 2;85(13):2537-2547. doi: 10.1158/0008-5472.CAN-24-2070.

Abstract

UNLABELLED

Cancers evolve in a dynamic ecosystem. Thus, characterizing the ecological dynamics of cancer is crucial to understanding cancer evolution, which can lead to the discovery of biomarkers to predict disease progression. Ductal carcinoma in situ (DCIS) is an early-stage breast cancer characterized by abnormal epithelial cell growth confined within the milk ducts, and biomarkers are needed to predict which cases will progress to aggressive disease. In this study, we showed that ecological analysis of hypoxia and acidosis biomarkers can significantly improve prediction of DCIS upstaging. Quantitative analyses were performed on immunohistologic images from a retrospective cohort of DCIS specimens collected from biopsy samples. First, an eco-evolutionary designed approach was developed to define habitats in the tumor intraductal microenvironment based on oxygen diffusion distance. Then, cancer cells with metabolic phenotypes attributed to their habitats were identified, including a hypoxia-responding CA9+ phenotype and an acid-adapted LAMP2b+ phenotype. Whereas these markers have traditionally shown limited, if any, predictive capabilities for DCIS progression when analyzed from an ecological perspective, their power to differentiate between non-upstaged and upstaged DCIS increased significantly. Additionally, the distribution of distinct niches with specific spatial patterns of these biomarkers predicted patient upstaging. The niches were characterized by pattern analysis of both cellular and spatial features. A random forest classifier that was trained and underwent a five-fold validation on the biopsy cohort achieved an AUC of 0.74 for predicting clinical outcome. These results affirm the importance of tumor ecological features in eco-evolutionary-designed approaches for biomarker discovery.

SIGNIFICANCE

Evolutionary dynamics of the various niches composing the tumor ecosystem can be harnessed for predicting cancer progression, demonstrating how eco-evolutionary-designed approaches can guide biomarkers discovery studies in the era of digital pathology. This article is part of a special series: Driving Cancer Discoveries with Computational Research, Data Science, and Machine Learning/AI.

摘要

未标注

癌症在动态生态系统中演变。因此,表征癌症的生态动力学对于理解癌症演变至关重要,这可能会促成预测疾病进展的生物标志物的发现。导管原位癌(DCIS)是一种早期乳腺癌,其特征是异常上皮细胞生长局限于乳腺导管内,需要生物标志物来预测哪些病例会进展为侵袭性疾病。在本研究中,我们表明对缺氧和酸中毒生物标志物进行生态分析可显著改善DCIS分期升级的预测。对从活检样本收集的DCIS标本回顾性队列的免疫组织学图像进行了定量分析。首先,开发了一种生态进化设计方法,根据氧扩散距离定义肿瘤导管内微环境中的栖息地。然后,识别出具有归因于其栖息地的代谢表型的癌细胞,包括缺氧反应性CA9 +表型和酸适应性LAMP2b +表型。从生态角度分析时,这些标志物传统上对DCIS进展的预测能力有限(如果有的话),但它们区分未分期和分期升级的DCIS的能力显著增强。此外,具有这些生物标志物特定空间模式的不同生态位的分布预测了患者分期升级。通过对细胞和空间特征的模式分析来表征这些生态位。在活检队列上训练并进行五重验证的随机森林分类器在预测临床结果时的AUC为0.74。这些结果证实了肿瘤生态特征在生态进化设计的生物标志物发现方法中的重要性。

意义

构成肿瘤生态系统的各种生态位的进化动力学可用于预测癌症进展,证明了生态进化设计方法如何在数字病理学时代指导生物标志物发现研究。本文是一个特别系列的一部分:通过计算研究、数据科学和机器学习/人工智能推动癌症发现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验