Suppr超能文献

健康老龄化过程中完整的强化学习。

Intact reinforcement learning in healthy ageing.

作者信息

Lin Wei-Hsiang, Pilz Karin S, Herzog Michael H, Kunchulia Marina

机构信息

Laboratory of Psychophysics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

Cito Institute for Educational Measurement, Arnhem, The Netherlands.

出版信息

Exp Brain Res. 2025 Jul 11;243(8):185. doi: 10.1007/s00221-025-07092-x.

Abstract

What changes with age? Results in reinforcement learning (RL) are mixed. Some studies found deteriorated RL performance in older participants compared to younger controls whereas other studies did not. Daniel et al. (J Neurosci 40(5):1084-1096, 2020. 10.1523/JNEUROSCI.0254-19.2019) suggested that task demand can explain these differences, with less demanding tasks showing no effect of age. Compared to classic, simple RL tasks, we used a navigation task to increase overall complexity. We found that older adults performed less efficiently initially; however, with sufficient trials, they performed as well as young adults. Our results support the idea that ageing does not universally impair performance and that even higher-level cognitive tasks remain largely intact.

摘要

随着年龄增长会发生什么变化?强化学习(RL)的结果参差不齐。一些研究发现,与年轻对照组相比,老年参与者的强化学习表现有所下降,而其他研究则没有发现这种情况。丹尼尔等人(《神经科学杂志》40(5):1084 - 1096,2020. 10.1523/JNEUROSCI.0254 - 19.2019)认为任务需求可以解释这些差异,要求较低的任务未显示出年龄效应。与经典的简单强化学习任务相比,我们使用了一项导航任务来增加整体复杂性。我们发现,老年人最初的表现效率较低;然而,经过足够的试验后,他们的表现与年轻人相当。我们的结果支持这样一种观点,即衰老并不会普遍损害表现,即使是更高层次的认知任务在很大程度上也保持完好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c62/12254157/59a538e4501d/221_2025_7092_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验