Suppr超能文献

使用深度学习模型同时识别运动模式、阶段和阶段进展

Simultaneous Recognition of Locomotion Mode, Phase, and Phase Progression Using Deep Learning Models.

作者信息

Kim Yekwang, Kim Jaewook, Moon Juhui, Choi Mun-Taek, Kim Seung-Jong

出版信息

IEEE Int Conf Rehabil Robot. 2025 May;2025:1-6. doi: 10.1109/ICORR66766.2025.11062982.

Abstract

Despite advances in gait-assist wearable robots, application in real-world scenarios remains limited, largely due to challenges in developing an effective user intention recognition algorithm. These algorithms are crucial as they enable the robot to move harmoniously with the user by predicting their intent during various locomotion activities such as level walking, stair ascent, stair descent, and sit-to-stand. It is essential to not only identify these locomotion modes but also their phases and progression for real-time assistance. Traditional classification methods often require extensive manual feature extraction from signals like those from inertial measurement units (IMU), electromyography, and plantar force sensors. Recent machine learning, particularly deep learning approaches, have simplified this process through automatic feature extraction. However, no existing method simultaneously predicts locomotion modes, phases, and phase progression, which is significant for personalized assistance. This study introduces a deep learning framework that classifies locomotion modes and phases and estimates the phase progressions using IMU data from sensors placed on the sternum and limbs. Results from five participants show that our model effectively classifies the locomotion phase and well estimates the phase progression percentage. The model was evaluated using a leave-one-subject-out approach, ensuring generalizability across different users.

摘要

尽管步态辅助可穿戴机器人取得了进展,但在现实场景中的应用仍然有限,这主要是由于开发有效的用户意图识别算法存在挑战。这些算法至关重要,因为它们能通过预测用户在诸如平地行走、上楼梯、下楼梯和从坐姿到站姿等各种运动活动中的意图,使机器人与用户和谐移动。不仅要识别这些运动模式,还要识别其阶段和进展情况以提供实时辅助,这一点至关重要。传统的分类方法通常需要从惯性测量单元(IMU)、肌电图和足底力传感器等信号中进行广泛的手动特征提取。最近的机器学习,特别是深度学习方法,通过自动特征提取简化了这一过程。然而,现有的方法都不能同时预测运动模式、阶段和阶段进展情况,而这对于个性化辅助非常重要。本研究引入了一个深度学习框架,该框架利用放置在胸骨和四肢上的传感器的IMU数据对运动模式和阶段进行分类,并估计阶段进展情况。五名参与者的结果表明,我们的模型有效地对运动阶段进行了分类,并很好地估计了阶段进展百分比。该模型采用留一法进行评估,确保了在不同用户间的通用性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验