Cai Ruanhong, Lechtenfeld Oliver J, Yan Zhenwei, Yi Yuanbi, Chen Xiaoxia, Zheng Qiang, Koch Boris P, Jiao Nianzhi, He Ding
Department of Ocean Science, Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, 999077 Hong Kong SAR, China.
State Key Laboratory of Marine Environmental Science, Xiamen University, 361102 Xiamen, China.
Sci Adv. 2025 Jul 11;11(28):eadw1148. doi: 10.1126/sciadv.adw1148.
Marine dissolved organic matter (DOM) is one of Earth's largest long-term carbon reservoirs, critical to the global carbon cycle. A key breakthrough in understanding this pool is the identification of biorefractory carboxyl-rich alicyclic molecules (CRAM). Recent studies have challenged the biorecalcitrance of CRAM but lacked detailed molecular evidence. Using advanced online countergradient liquid chromatography-Fourier transform ion cyclotron resonance mass spectrometry to track microbial incubation, we revealed a wide spectrum of CRAM bioavailability regulated by molecular polarity. CRAM with lower polarity were preferentially degraded, whereas microbial reworking led to production of higher-polarity CRAM, characterized by increased oxidation state, nitrogen content, and aromaticity. Some microbially transformed CRAM were frequently detected in a global DOM dataset of 1485 seawater samples, suggesting their potential persistence in marine environments. This study provides molecular insights into the biorecalcitrance and transformation pathway of CRAM, underscoring the complexity and dynamic nature of marine organic carbon cycling.
海洋溶解有机物(DOM)是地球上最大的长期碳库之一,对全球碳循环至关重要。理解这一碳库的一个关键突破是对富含羧基的生物难降解脂环族分子(CRAM)的识别。最近的研究对CRAM的生物难降解性提出了挑战,但缺乏详细的分子证据。我们使用先进的在线反梯度液相色谱-傅里叶变换离子回旋共振质谱来追踪微生物培养过程,揭示了由分子极性调节的广泛的CRAM生物可利用性。极性较低的CRAM优先被降解,而微生物改造导致产生极性较高的CRAM,其特征是氧化态、氮含量和芳香性增加。在一个包含1485个海水样本的全球DOM数据集中经常检测到一些经微生物转化的CRAM,这表明它们在海洋环境中可能具有持久性。这项研究为CRAM的生物难降解性和转化途径提供了分子层面的见解,强调了海洋有机碳循环的复杂性和动态性质。