Suppr超能文献

基于机器学习预测和理解聚酰胺纳滤膜对锂/镁选择性分离的性能

Predicting and understanding the performance of polyamide nanofiltration membrane for Li/Mg selective separation based on machine learning.

作者信息

Sun Jing-Ou, Hua Tian-Wei, Guan Yan-Fang, Yu Han-Qing

机构信息

State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.

State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.

出版信息

Water Res. 2025 Oct 1;285:124140. doi: 10.1016/j.watres.2025.124140. Epub 2025 Jun 30.

Abstract

Nanofiltration technology holds significant promise for the selective separation of monovalent and multivalent ions, such as lithium (Li) and magnesium (Mg), during Li extraction from salt lakes. Nevertheless, optimizing polyamide nanofiltration membranes for selective ion separation remains inherently challenging due to the complex interactions between ions and membrane structural and experimental parameters, making the ion transport mechanism ambiguous. This work employed a machine learning (ML) approach to identify and comprehensively understand the features that influence the membrane permeability and selectivity using a comprehensive dataset, which encompassed fabrication parameters, experimental conditions, membrane properties, and single salt rejection performance. Initially, ML algorithms accurately predicted intrinsic membrane properties using only fabrication parameters but struggled to predict permeation and selectivity when combining fabrication parameters or membrane properties with experimental conditions. To address this limitation, salt rejection performance was incorporated, and various combinations of input variables were systematically compared to identify optimal input configurations for robust ML algorithms capable of accurately predicting membrane permeability and selectivity. Using the Shapley additive explanation (SHAP) method, we found that membrane permeability was mainly determined by fabrication parameters such as substrate type and heat curing temperature. While these parameters also influenced molecular weight cut-off (MWCO) and zeta potential, they did not fully reflect the physicochemical factors governing ion separation. In contrast, MgCl rejection served as a more integrative and informative descriptor, capturing both pore structure and surface electrostatic effects in predicting Li/Mg selectivity. These findings underscore the necessity of a multifaceted approach in modeling membrane performance, integrating both intrinsic properties and external factors to achieve optimal ion selectivity.

摘要

纳滤技术在从盐湖中提取锂的过程中,对于单价和多价离子(如锂(Li)和镁(Mg))的选择性分离具有重大前景。然而,由于离子与膜结构及实验参数之间复杂的相互作用,优化用于选择性离子分离的聚酰胺纳滤膜仍然具有内在挑战性,这使得离子传输机制尚不明确。这项工作采用机器学习(ML)方法,利用一个综合数据集来识别并全面理解影响膜渗透性和选择性的特征,该数据集涵盖了制备参数、实验条件、膜性能和单盐截留性能。最初,ML算法仅使用制备参数就能准确预测膜的固有性能,但在将制备参数或膜性能与实验条件相结合时,难以预测渗透率和选择性。为解决这一局限性,纳入了盐截留性能,并系统地比较了输入变量的各种组合,以确定能够准确预测膜渗透性和选择性的稳健ML算法的最佳输入配置。使用Shapley加法解释(SHAP)方法,我们发现膜渗透性主要由诸如基底类型和热固化温度等制备参数决定。虽然这些参数也影响截留分子量(MWCO)和zeta电位,但它们并未完全反映控制离子分离的物理化学因素。相比之下,MgCl截留作为一个更具综合性和信息量的描述符,在预测Li/Mg选择性时既捕捉了孔结构又捕捉了表面静电效应。这些发现强调了在膜性能建模中采用多方面方法的必要性,整合固有特性和外部因素以实现最佳离子选择性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验