Picco Andrea, Toret Christopher P, Rivier-Cordey Anne-Sophie, Kaksonen Marko
University of Geneva, Department of Biochemistry, Quai Ernest-Ansermet 30, 1211 Geneva, Switzerland.
University of Geneva, Department of Biochemistry, Quai Ernest-Ansermet 30, 1211 Geneva, Switzerland.
Curr Biol. 2025 Aug 4;35(15):3674-3686.e4. doi: 10.1016/j.cub.2025.06.052. Epub 2025 Jul 10.
Clathrin-mediated endocytosis is an ancient eukaryotic trafficking pathway, which transports plasma membrane and associated cargo into the cell and is involved in numerous cell- and tissue-level processes. Cargo selection and clathrin-coated vesicle formation are mediated by over 60 proteins that assemble in a regular and sequential manner at the plasma membrane. Decades of endocytosis studies have followed the tenet that uncovering the conserved core molecular mechanisms is sufficient to understand a cellular process. However, this approach also revealed a number of cell-type- or species-related variations that challenge the notion of a universally conserved, core mechanism. In this paper, we refocus on the endocytic diversity to understand how evolution shapes endocytic mechanisms. We define a comparative evolutionary cell biology approach that uses dikarya fungi as a model clade and live-cell fluorescence microscopy to study endocytosis dynamics in three species: Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Ustilago maydis. Our results quantitatively define several phenotypic differences between the species. We uncover differences that impact the endocytic early phase, the protein assembly order, actin regulation, membrane invagination, and scission. These findings demonstrate a mosaic evolution of endocytic traits, suggesting ancestral states and directions of change. We also investigate phenotypic plasticity and robustness against environmental conditions. Lastly, we demonstrate that relatively minor evolutionary changes can majorly impact endocytic phenotypes. These findings promote an appreciation of endocytic variation as not auxiliary, but vital to the mechanistic understanding of this conserved cellular pathway.
网格蛋白介导的内吞作用是一种古老的真核生物运输途径,它将质膜及相关货物转运到细胞内,并参与众多细胞和组织水平的过程。货物选择和网格蛋白包被囊泡的形成由60多种蛋白质介导,这些蛋白质在质膜上以规则且有序的方式组装。数十年来的内吞作用研究一直遵循这样的原则,即揭示保守的核心分子机制足以理解一个细胞过程。然而,这种方法也揭示了一些与细胞类型或物种相关的变异,这些变异对普遍保守的核心机制这一概念提出了挑战。在本文中,我们重新聚焦于内吞作用的多样性,以了解进化如何塑造内吞机制。我们定义了一种比较进化细胞生物学方法,该方法以双核真菌作为模型类群,并使用活细胞荧光显微镜来研究酿酒酵母、裂殖酵母和玉米黑粉菌这三种物种的内吞作用动力学。我们的结果定量地定义了这几种物种之间的一些表型差异。我们发现了影响内吞作用早期阶段、蛋白质组装顺序、肌动蛋白调节、膜内陷和切割的差异。这些发现证明了内吞特征的镶嵌进化,暗示了祖先状态和变化方向。我们还研究了针对环境条件的表型可塑性和稳健性。最后,我们证明相对较小的进化变化可能会对内吞表型产生重大影响。这些发现促使人们认识到内吞作用的变异并非辅助性的,而是对理解这一保守细胞途径的机制至关重要。