Li Jingxuan, Deng Shiqing, Ma Liyang, Si Yangyang, Zhou Chao, Wang Kefan, Huang Sizhe, Yang Jiyuan, Tang Yunlong, Ku Yu-Chieh, Kuo Chang-Yang, Li Yijie, Das Sujit, Liu Shi, Chen Zuhuang
State Key Laboratory of Precision Welding and Joining of Materials and Structures, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, China.
Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, China.
Nat Commun. 2025 Jul 11;16(1):6417. doi: 10.1038/s41467-025-61758-2.
The metastability of the polar phase in HfO, despite its excellent compatibility with the complementary metal-oxide-semiconductor process, remains a key obstacle for its industrial applications. Traditional stabilization approaches, such as doping, often induce crystal defects and impose constraints on the thickness of ferroelectric HfO thin films. These limitations render the ferroelectric properties vulnerable to degradation, particularly due to phase transitions under operational conditions. Here, we demonstrate robust ferroelectricity in high-quality epitaxial (HfO)/(ZrO) superlattices, which exhibit significantly enhanced ferroelectric stability across an extended thickness range. Optimized-period superlattices maintain stable ferroelectricity from up to 100 nm, excellent fatigue resistance exceeding 10 switching cycles, and a low coercive field of ~0.85 MV/cm. First-principles calculations reveal that the kinetic energy barrier of phase transition and interfacial formation energy are crucial factors in suppressing the formation of non-polar phases. This work establishes a versatile platform for exploring high-performance fluorite-structured superlattices and advances the integration of HfO-based ferroelectrics into a broader range of applications.
尽管HfO中极性相具有与互补金属氧化物半导体工艺的出色兼容性,但其亚稳定性仍然是其工业应用的关键障碍。传统的稳定化方法,如掺杂,常常会诱导晶体缺陷,并对铁电HfO薄膜的厚度施加限制。这些限制使得铁电性能容易退化,特别是在工作条件下由于相变导致的退化。在此,我们展示了高质量外延(HfO)/(ZrO)超晶格中强大的铁电性,该超晶格在扩展的厚度范围内表现出显著增强的铁电稳定性。优化周期的超晶格在高达100纳米的厚度下保持稳定的铁电性,具有超过10次开关循环的出色抗疲劳性,以及约0.85 MV/cm的低矫顽场。第一性原理计算表明,相变的动能势垒和界面形成能是抑制非极性相形成的关键因素。这项工作建立了一个探索高性能萤石结构超晶格的通用平台,并推动了基于HfO的铁电体在更广泛应用中的集成。