Suppr超能文献

基于单机器人移动路径规划的远距离目标定位优化算法

Long-distance target localization optimization algorithm based on single robot moving path planning.

作者信息

Chen Yourong, Wu Ke, Guo Yidan, Zhao Kehua, Liu Liyuan

机构信息

College of Information Science and Technology, Zhejiang Shuren University, Hangzhou, 310015, China.

School of Information Engineering, Huzhou University, Huzhou, 313000, China.

出版信息

Sci Rep. 2025 Jul 11;15(1):25157. doi: 10.1038/s41598-025-09428-7.

Abstract

To address the problem of low positioning accuracy for long-distance static targets, we propose an optimized algorithm for long-distance target localization (LTLO) based on single-robot moving path planning. The algorithm divides the robot's movement area into hexagonal grids and introduces constraints on stopping position selection and non-redundant locations. Based on image parallelism, we propose a method for calculating the relative position of the target using sensing information from two positions. Additionally, an improved hierarchical density-Based spatial clustering of applications with noise (HDBSCAN) algorithm is developed to fuse the relative coordinates of multiple targets. Furthermore, we establish the corresponding constraints for long-distance target localization and construct a target localization optimization model based on single-robot path planning. To solve this model, we employ a double deep Q-network and propose a reward strategy based on coordinate fusion error. This approach solves the optimization model and obtains the optimal target positions and path trajectories, thereby improving the positioning accuracy for long-distance targets. Experimental results demonstrate that for static targets at distances ranging from 100 to 500 meters, LTLO outperforms traditional monocular visual localization (TMVL), monocular global geolocation (MGG) and long-range binocular vision target geolocation (LRBVTG) by obtaining an optimal path to identify target positions, maintaining a relative localization error within 4% and an absolute localization error within 6%.

摘要

为了解决长距离静态目标定位精度低的问题,我们提出了一种基于单机器人移动路径规划的长距离目标定位优化算法(LTLO)。该算法将机器人的移动区域划分为六边形网格,并对停止位置选择和非冗余位置引入约束。基于图像并行性,我们提出了一种利用两个位置的传感信息计算目标相对位置的方法。此外,还开发了一种改进的基于密度的带噪声应用的分层空间聚类(HDBSCAN)算法,以融合多个目标的相对坐标。此外,我们建立了长距离目标定位的相应约束,并构建了基于单机器人路径规划的目标定位优化模型。为了解决这个模型,我们采用了双深度Q网络,并提出了一种基于坐标融合误差的奖励策略。这种方法解决了优化模型,获得了最优的目标位置和路径轨迹,从而提高了长距离目标的定位精度。实验结果表明,对于距离在100到500米之间的静态目标,LTLO通过获得识别目标位置的最优路径,优于传统单目视觉定位(TMVL)、单目全球地理定位(MGG)和长距离双目视觉目标地理定位(LRBVTG),将相对定位误差保持在4%以内,绝对定位误差保持在6%以内。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验