Suppr超能文献

基于具有自适应权重调整的生成对抗网络的电子商务产品价格预测模型设计

Design of e-commerce product price prediction model based on generative adversarial network with adaptive weight adjustment.

作者信息

Abudureheman Abuduaini, Zhao Yan, Nilupaer Aishanjiang

机构信息

School of Economics, Guangdong University of Finance and Economics, GuangZhou, 510320, Guangdong, China.

School of Public Finance and Taxation of GDUFE, Guangdong University of Finance and Economics, Guangzhou, 510320, Guangdong, China.

出版信息

Sci Rep. 2025 Jul 11;15(1):25126. doi: 10.1038/s41598-025-10767-8.

Abstract

E-commerce platforms have amassed extensive transaction data, which serves as a valuable source for price prediction. However, the diversity of commodities poses challenges such as data imbalance, model overfitting, and underfitting. To address these issues, this paper presents an improved generative adversarial network model that integrates the strengths of Conditional Generative Adversarial Nets and the Wasserstein Generative Adversarial Network. By introducing Wasserstein scatter and removing Lipschitz constraints, we propose the CWGAN model to mitigate data imbalance and enhance the quality of generated samples. Furthermore, we incorporate Adaptive Weight Adjustment (AWA) and a differential evolution strategy, resulting in the Adaptive Weight Adjustment-Conditional Wasserstein Generative Adversarial Network (AWA-CWGAN) algorithm. This algorithm employs a neighborhood learning strategy to update the optimal individuals within subpopulations, thereby reinforcing the influence of elite individuals during population evolution. Additionally, dynamic weight adjustment based on sparsity is implemented to increase genetic diversity within the population. Experimental results demonstrate that the AWA-CWGAN algorithm achieves complete convergence with only 16-25% of the global evolutionary generations required by the standard differential evolutionary algorithm or the hybrid frog-leaping algorithm. Moreover, the AWA-CWGAN algorithm surpasses baseline methods in accuracy (88.8%), precision (88.81%), recall (89.255%), and F1 score (87.95%). These results indicate that the proposed approach significantly enhances the accuracy of e-commerce product price predictions, providing robust decision-making support for merchants.

摘要

电子商务平台积累了大量交易数据,这些数据是价格预测的宝贵来源。然而,商品的多样性带来了诸如数据不平衡、模型过拟合和欠拟合等挑战。为了解决这些问题,本文提出了一种改进的生成对抗网络模型,该模型整合了条件生成对抗网络和瓦瑟斯坦生成对抗网络的优势。通过引入瓦瑟斯坦散度并去除利普希茨约束,我们提出了CWGAN模型来减轻数据不平衡并提高生成样本的质量。此外,我们纳入了自适应权重调整(AWA)和差分进化策略,从而产生了自适应权重调整-条件瓦瑟斯坦生成对抗网络(AWA-CWGAN)算法。该算法采用邻域学习策略来更新子种群内的最优个体,从而在种群进化过程中加强精英个体的影响。此外,还实施了基于稀疏性的动态权重调整,以增加种群内的遗传多样性。实验结果表明,AWA-CWGAN算法仅需标准差分进化算法或混合蛙跳算法所需全局进化代数的16%-25%就能实现完全收敛。此外,AWA-CWGAN算法在准确率(88.8%)、精确率(88.81%)、召回率(89.255%)和F1分数(87.95%)方面超过了基线方法。这些结果表明,所提出的方法显著提高了电子商务产品价格预测的准确性,为商家提供了有力的决策支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5289/12254330/a6445e5b88af/41598_2025_10767_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验