Deng Kun, Wang Jiaojiao, Zhou Xia, Geng Yuanyuan, Liu Weiquan, Zhang Yiheng, Liu Yuangang, Jiang Wei
State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen, 361021, China.
Sci Rep. 2025 Jul 11;15(1):25031. doi: 10.1038/s41598-025-10353-y.
Here, we engineered hypoxia-responsive nanoparticles (NI-HA-BMs-DOX) comprising 2-nitroimidazole (NI), hyaluronic acid (HA), bacterial magnetosomes (BMs), and doxorubicin (DOX) for targeted drug delivery. Under tumor hypoxia, the hypoxia-sensitive NI moiety undergoes reduction to 2-aminoimidazole, inducing a transition of the nanoparticles from a hydrophobic to a hydrophilic state, thereby facilitating controlled DOX release. Cellular assays demonstrated selective DOX delivery to HepG2 hepatocellular carcinoma cells under hypoxic conditions, while exhibiting minimal cytotoxicity toward normal hepatocytes (HL-7702). NI-HA-BMs-DOX significantly enhanced tumor cytotoxicity and apoptosis by upregulating caspase-3, caspase-8, and Tp53, demonstrating superior efficacy compared to free DOX and HA-BMs-DOX. In vivo studies further confirmed the therapeutic potential of NI-HA-BMs-DOX (4 mg/kg DOX equivalent), achieving a tumor inhibition rate of 55.38%, which exceeded that of HA-BMs-DOX (43.88%) and free DOX (34.90%). These findings validate NI-HA-BMs-DOX as a promising hypoxia-targeted therapeutic platform for HCC and highlight the potential of bacterial magnetosomes in improving drug delivery strategies for cancer treatment.
在此,我们设计了一种缺氧响应性纳米颗粒(NI-HA-BMs-DOX),其由2-硝基咪唑(NI)、透明质酸(HA)、细菌磁小体(BMs)和阿霉素(DOX)组成,用于靶向药物递送。在肿瘤缺氧条件下,对缺氧敏感的NI部分还原为2-氨基咪唑,诱导纳米颗粒从疏水状态转变为亲水状态,从而促进DOX的可控释放。细胞实验表明,在缺氧条件下,DOX可选择性递送至HepG2肝癌细胞,而对正常肝细胞(HL-7702)的细胞毒性极小。NI-HA-BMs-DOX通过上调caspase-3、caspase-8和Tp53显著增强了肿瘤细胞毒性和凋亡,与游离DOX和HA-BMs-DOX相比,显示出更高的疗效。体内研究进一步证实了NI-HA-BMs-DOX(4mg/kg DOX当量)的治疗潜力,其肿瘤抑制率达到55.38%,超过了HA-BMs-DOX(43.88%)和游离DOX(34.90%)。这些发现验证了NI-HA-BMs-DOX作为一种有前景的肝癌缺氧靶向治疗平台,并突出了细菌磁小体在改善癌症治疗药物递送策略方面的潜力。