Wang Zuo, Yu Bomiao, Guo Shuaifeng, Chen Qiuchi, Zhang Xiaomei, Zhang Ran, Fan Yongle, Lv Jia, Dong Yang, Niu Qian, Zhang Xiaohan, Liu Yongmei, Chen Lu, Wu Ying, Xu Xingming, Liu Ruimin, Jiao Yuxin, Hu Di, Jia Yan, Wang Bingwei, Cao Zheng, Tan Qiaoyun, Yu Xiaobo
School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
State Key Laboratory of Medical Proteomics, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China.
Clin Exp Med. 2025 Jul 12;25(1):245. doi: 10.1007/s10238-025-01780-2.
Autoimmune disease associated autoantibodies have been implicated in both immune-related adverse events (irAEs) and chemoimmunotherapy responses; however, current biomarkers lack sufficient predictive power, especially for irAEs severity. Here, we developed an autoimmune disease (AID) autoantigen microarray (AID microarray) capable of detecting 125 autoantibodies associated with over 30 autoimmune diseases. The AID microarray demonstrated excellent reproducibility (intra-batch correlation: 0.99; inter-batch correlation: 0.97) and strong concordance with clinical chemiluminescence immunoassays (R = 0.86). We analyzed baseline serum samples from 83 lung cancer patients who experienced varying severity of irAEs following immune checkpoint inhibitors (ICIs) therapy. Nine autoantibodies were identified as being positively correlated with irAEs severity (samr-nonparametric, p < 0.05). A predictive model incorporating these nine autoantibodies (9-panel) effectively distinguished patients at risk of irAEs (G0 vs. G1&G2&G3: AUC = 0.854) and severe irAEs (G0 vs. G3: AUC = 0.934). Additionally, an eight-autoantibody panel (8-panel) demonstrated robust performance in predicting immunotherapy efficacy, achieving an AUC of 0.855 in the training cohort and 0.746 in the validation cohort. Multivariate Cox regression analysis identified anti-NAP1L4 IgG and anti-Ku IgG as independent prognostic risk factors (hazard ratio [HR] > 1, p < 0.05), whereas anti-GLRA2 IgA and anti-KRT20 IgA exhibited protective effects (HR < 1, p < 0.05). These findings support the use of autoantibody profiling as a predictive tool for both treatment response and irAEs in NSCLC patients receiving ICIs. The AID microarray offers a high-throughput platform for identifying autoantibody biomarkers that may guide immunotherapy in cancer patients.
自身免疫性疾病相关自身抗体与免疫相关不良事件(irAEs)和化学免疫治疗反应均有关联;然而,目前的生物标志物缺乏足够的预测能力,尤其是对于irAEs的严重程度。在此,我们开发了一种自身免疫性疾病(AID)自身抗原微阵列(AID微阵列),能够检测与30多种自身免疫性疾病相关的125种自身抗体。该AID微阵列显示出优异的重复性(批内相关性:0.99;批间相关性:0.97),并与临床化学发光免疫分析具有高度一致性(R = 0.86)。我们分析了83例肺癌患者在接受免疫检查点抑制剂(ICI)治疗后出现不同严重程度irAEs的基线血清样本。九种自身抗体被确定与irAEs严重程度呈正相关(samr非参数检验,p < 0.05)。纳入这九种自身抗体的预测模型(9-panel)能够有效区分有irAEs风险的患者(G0 vs. G1&G2&G3:AUC = 0.854)和严重irAEs患者(G0 vs. G3:AUC = 0.934)。此外,一个八自身抗体组合(8-panel)在预测免疫治疗疗效方面表现出强大性能,在训练队列中的AUC为0.855,在验证队列中的AUC为0.746。多变量Cox回归分析确定抗NAP1L4 IgG和抗Ku IgG为独立的预后风险因素(风险比[HR] > 1,p < 0.05),而抗GLRA2 IgA和抗KRT20 IgA表现出保护作用(HR < 1,p < 0.05)。这些发现支持将自身抗体谱分析作为接受ICI治疗的非小细胞肺癌患者治疗反应和irAEs的预测工具。AID微阵列为识别可能指导癌症患者免疫治疗的自身抗体生物标志物提供了一个高通量平台。