Colonna Giovanni
Medical Informatics Unit-AOU L. Vanvitelli, Università della Campania, 80138 Naples, Italy.
Cancers (Basel). 2025 Jun 23;17(13):2102. doi: 10.3390/cancers17132102.
Cancer research faces significant biological, technological, and systemic limitations that hinder the development of effective therapies and improved patient outcomes. Traditional preclinical models, such as 2D and 3D cell cultures, murine xenografts, and organoids, often fail to reflect the complexity of human tumor architecture, microenvironment, and immune interactions. This discrepancy results in promising laboratory findings not always translating effectively into clinical success. A core obstacle is tumor heterogeneity, characterized by diverse genetic, epigenetic, and phenotypic variations within tumors, which complicates treatment strategies and contributes to drug resistance. Hereditary malignancies and cancer stem cells contribute strongly to generating this complex panorama. Current early detection technologies lack sufficient sensitivity and specificity, impeding timely diagnosis. The tumor microenvironment, with its intricate interactions and resistance-promoting factors, further promotes treatment failure. Additionally, we only partially understand the biological processes driving metastasis, limiting therapeutic advances. Overcoming these barriers involves not only the use of new methodological approaches and advanced technologies, but also requires a cultural effort by researchers. Many cancer studies are still essentially observational. While acknowledging their significance, it is crucial to recognize the shift from deterministic to indeterministic paradigms in biomedicine over the past two to three decades, a transition facilitated by systems biology. It has opened the doors of deep metabolism where the functional processes that control and regulate cancer progression operate. Beyond biological barriers, systemic challenges include limited funding, regulatory complexities, and disparities in cancer care access across different populations. These socio-economic factors exacerbate research stagnation and hinder the translation of scientific innovations into clinical practice. Overcoming these obstacles requires multidisciplinary collaborations, advanced modeling techniques that better emulate human cancer, and innovative technologies for early detection and targeted therapy. Strategic policy initiatives must address systemic barriers, promoting health equity and sustainable research funding. While the complexity of cancer biology and systemic challenges are formidable, ongoing scientific progress and collaborative efforts inspire hope for breakthroughs that can transform cancer diagnosis, treatment, and survival outcomes worldwide.
癌症研究面临着重大的生物学、技术和系统性限制,这些限制阻碍了有效疗法的开发和患者预后的改善。传统的临床前模型,如二维和三维细胞培养、小鼠异种移植和类器官,往往无法反映人类肿瘤结构、微环境和免疫相互作用的复杂性。这种差异导致有前景的实验室研究结果并不总能有效地转化为临床成功。一个核心障碍是肿瘤异质性,其特征是肿瘤内存在多种遗传、表观遗传和表型变异,这使治疗策略变得复杂,并导致耐药性。遗传性恶性肿瘤和癌症干细胞在形成这种复杂局面中起了很大作用。当前的早期检测技术缺乏足够的敏感性和特异性,阻碍了及时诊断。肿瘤微环境及其复杂的相互作用和促进耐药的因素,进一步加剧了治疗失败。此外,我们对驱动转移的生物学过程了解有限,限制了治疗进展。克服这些障碍不仅需要使用新的方法和先进技术,还需要研究人员在观念上做出努力。许多癌症研究本质上仍然是观察性的。虽然认识到它们的重要性,但至关重要的是要认识到在过去二三十年里,生物医学已从确定性范式转变为不确定性范式,系统生物学推动了这一转变。它打开了深入代谢的大门,控制和调节癌症进展的功能过程就在这里运作。除了生物学障碍,系统性挑战还包括资金有限、监管复杂性以及不同人群在癌症治疗可及性方面的差异。这些社会经济因素加剧了研究停滞,并阻碍了科学创新向临床实践的转化。克服这些障碍需要多学科合作、能更好模拟人类癌症的先进建模技术,以及用于早期检测和靶向治疗的创新技术。战略政策举措必须解决系统性障碍,促进健康公平和可持续的研究资金投入。虽然癌症生物学的复杂性和系统性挑战令人生畏,但正在取得的科学进展和合作努力激发了人们的希望,期待能取得突破,从而改变全球癌症的诊断、治疗和生存结果。
Cancers (Basel). 2025-6-23
Arch Ital Urol Androl. 2025-6-30
2025-1
Cochrane Database Syst Rev. 2022-4-26
J Health Organ Manag. 2025-6-30
Psychopharmacol Bull. 2024-7-8
PLoS Biol. 2025-3-18
Biochim Biophys Acta Rev Cancer. 2025-4
Signal Transduct Target Ther. 2025-2-21
Cancers (Basel). 2025-1-28
Adv Sci (Weinh). 2025-4