Suppr超能文献

一项基于机器学习的多中心预测模型,用于预测接受挽救性放疗的前列腺癌患者的急性毒性(ICAROS研究)。

A Multicenter Machine Learning-Based Predictive Model of Acute Toxicity in Prostate Cancer Patients Undergoing Salvage Radiotherapy (ICAROS Study).

作者信息

Deodato Francesco, Macchia Gabriella, Duhanxhiu Patrick, Mammini Filippo, Cavallini Letizia, Ntreta Maria, Zamfir Arina Alexandra, Buwenge Milly, Cellini Francesco, Ciabatti Selena, Bianchi Lorenzo, Schiavina Riccardo, Brunocilla Eugenio, D'Angelo Elisa, Morganti Alessio Giuseppe, Cilla Savino

机构信息

Radiotherapy Unit, Responsible Research Hospital, 86100 Campobasso, Italy.

Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Roma, Italy.

出版信息

Cancers (Basel). 2025 Jun 25;17(13):2142. doi: 10.3390/cancers17132142.

Abstract

BACKGROUND

This study aimed to develop a predictive model for acute gastrointestinal (GI) and genitourinary (GU) toxicity in prostate cancer patients treated with salvage radiotherapy (SRT) post-prostatectomy, using machine learning techniques to identify key prognostic factors.

METHODS

A multicenter retrospective study analyzed 454 patients treated with SRT from three Italian radiotherapy centers. Acute toxicity was assessed using Radiation Therapy Oncology Group criteria. Predictors of grade ≥ 2 toxicity were identified through Least Absolute Shrinkage and Selection Operator (LASSO) regression and Classification and Regression Tree (CART) modeling. The analyzed variables included surgical technique, clinical target volume (CTV) to planning target volume (PTV) margins, extent of lymphadenectomy, radiotherapy technique, and androgen-deprivation therapy (ADT).

RESULTS

No patients experienced grade ≥ 4 toxicity, and grade 3 toxicity was below 1% for both GI and GU events. The primary determinant of acute toxicity was the surgical technique. Open prostatectomy was associated with significantly higher grade ≥ 2 GI (41.8%) and GU (35.9%) toxicity compared to laparoscopic/robotic approaches (18.9% and 12.2%, respectively). A CTV-to-PTV margin ≥ 10 mm further increased toxicity, particularly when combined with extensive lymphadenectomy. SRT technique and ADT were additional predictors in some subgroups.

CONCLUSIONS

SRT demonstrated excellent tolerability. Surgical technique, CTV-to-PTV margin, and treatment parameters were key predictors of toxicity. These findings emphasize the need for personalized treatment strategies integrating surgical and radiotherapy factors to minimize toxicity and optimize outcomes in prostate cancer patients.

摘要

背景

本研究旨在为前列腺癌根治术后接受挽救性放疗(SRT)的患者开发一种预测急性胃肠道(GI)和泌尿生殖系统(GU)毒性的模型,采用机器学习技术来识别关键的预后因素。

方法

一项多中心回顾性研究分析了来自三个意大利放疗中心接受SRT治疗的454例患者。使用放射治疗肿瘤学组标准评估急性毒性。通过最小绝对收缩和选择算子(LASSO)回归以及分类与回归树(CART)建模确定≥2级毒性的预测因素。分析的变量包括手术技术、临床靶体积(CTV)到计划靶体积(PTV)的边缘、淋巴结清扫范围、放疗技术以及雄激素剥夺治疗(ADT)。

结果

无患者出现≥4级毒性,GI和GU事件的3级毒性均低于1%。急性毒性的主要决定因素是手术技术。与腹腔镜/机器人手术方法(分别为18.9%和12.2%)相比,开放性前列腺切除术与显著更高的≥2级GI(41.8%)和GU(35.9%)毒性相关。CTV到PTV边缘≥10 mm会进一步增加毒性,尤其是与广泛淋巴结清扫联合时。SRT技术和ADT在一些亚组中是额外的预测因素。

结论

SRT显示出良好的耐受性。手术技术、CTV到PTV边缘以及治疗参数是毒性的关键预测因素。这些发现强调了需要整合手术和放疗因素的个性化治疗策略,以尽量减少前列腺癌患者的毒性并优化治疗结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1754/12249318/f886a4e89fec/cancers-17-02142-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验