小儿胶质瘤临床前模型的现状:临床意义与未来方向
Current Landscape of Preclinical Models for Pediatric Gliomas: Clinical Implications and Future Directions.
作者信息
Faisal Syed M, Yadav Monika, Gibson Garrett R, Klinestiver Adora T, Sorenson Ryan M, Cantor Evan, Ghishan Maria, Prensner John R, Franson Andrea T, Ginn Kevin F, Koschmann Carl, Yadav Viveka Nand
机构信息
Department of Pediatrics, Children's Mercy Research Institute (CMRI), Kansas City, MO 64108, USA.
Division of Hematology and Oncology, Connecticut Children's Medical Center, Hartford, CT 06106, USA.
出版信息
Cancers (Basel). 2025 Jul 2;17(13):2221. doi: 10.3390/cancers17132221.
Pediatric high-grade gliomas (pHGGs), particularly diffuse midline gliomas (DMGs), are among the most lethal brain tumors due to poor survival and resistance to therapies. DMGs possess a distinct genetic profile, primarily driven by hallmark mutations such as H3K27M, ACVR1, and PDGFRA mutations/amplifications and TP53 inactivation, all of which contribute to tumor biology and therapeutic resistance. Developing physiologically relevant preclinical models that replicate both tumor biology and the tumor microenvironment (TME) is critical for advancing effective treatments. This review highlights recent progress in in vitro, ex vivo, and in vivo models, including patient-derived brain organoids, genetically engineered mouse models (GEMMs), and region-specific midline organoids incorporating SHH, BMP, and FGF2/8/19 signaling to model pontine gliomas. Key genetic alterations can now be introduced using lipofectamine-mediated transfection, PiggyBac plasmid systems, and CRISPR-Cas9, allowing the precise study of tumor initiation, progression, and therapy resistance. These models enable the investigation of TME interactions, including immune responses, neuronal infiltration, and therapeutic vulnerabilities. Future advancements involve developing immune-competent organoids, integrating vascularized networks, and applying multi-omics platforms like single-cell RNA sequencing and spatial transcriptomics to dissect tumor heterogeneity and lineage-specific vulnerabilities. These innovative approaches aim to enhance drug screening, identify new therapeutic targets, and accelerate personalized treatments for pediatric gliomas.
小儿高级别胶质瘤(pHGGs),尤其是弥漫性中线胶质瘤(DMGs),因其生存率低和对治疗耐药,是最致命的脑肿瘤之一。DMGs具有独特的基因特征,主要由标志性突变驱动,如H3K27M、ACVR1和PDGFRA突变/扩增以及TP53失活,所有这些都对肿瘤生物学和治疗耐药性有影响。开发能够复制肿瘤生物学和肿瘤微环境(TME)的生理相关临床前模型对于推进有效治疗至关重要。本综述重点介绍了体外、离体和体内模型的最新进展,包括患者来源的脑类器官、基因工程小鼠模型(GEMMs)以及整合SHH、BMP和FGF2/8/19信号以模拟桥脑胶质瘤 的区域特异性中线类器官。现在可以使用脂质体介导的转染、PiggyBac质粒系统和CRISPR-Cas9引入关键基因改变,从而精确研究肿瘤的起始、进展和治疗耐药性。这些模型能够研究TME相互作用,包括免疫反应、神经元浸润和治疗易感性。未来的进展包括开发具有免疫活性的类器官、整合血管化网络,以及应用单细胞RNA测序和空间转录组学等多组学平台来剖析肿瘤异质性和谱系特异性易感性。这些创新方法旨在加强药物筛选、识别新的治疗靶点,并加速小儿胶质瘤的个性化治疗。